5 research outputs found
Hecke algebras of finite type are cellular
Let \cH be the one-parameter Hecke algebra associated to a finite Weyl
group , defined over a ground ring in which ``bad'' primes for are
invertible. Using deep properties of the Kazhdan--Lusztig basis of \cH and
Lusztig's \ba-function, we show that \cH has a natural cellular structure
in the sense of Graham and Lehrer. Thus, we obtain a general theory of ``Specht
modules'' for Hecke algebras of finite type. Previously, a general cellular
structure was only known to exist in types and .Comment: 14 pages; added reference
A class of Calogero type reductions of free motion on a simple Lie group
The reductions of the free geodesic motion on a non-compact simple Lie group
G based on the symmetry given by left- and right
multiplications for a maximal compact subgroup are
investigated. At generic values of the momentum map this leads to (new) spin
Calogero type models. At some special values the `spin' degrees of freedom are
absent and we obtain the standard Sutherland model with three
independent coupling constants from SU(n+1,n) and from SU(n,n). This
generalization of the Olshanetsky-Perelomov derivation of the model with
two independent coupling constants from the geodesics on with
G=SU(n+1,n) relies on fixing the right-handed momentum to a non-zero character
of . The reductions considered permit further generalizations and work at
the quantized level, too, for non-compact as well as for compact G.Comment: shortened to 13 pages in v2 on request of Lett. Math. Phys. and
corrected some spelling error