4 research outputs found

    Neuere Ballonmessungen zur Photochemie und der Menge an stratosphärischem Brom

    Get PDF
    Halogene wie Chlor und Brom sind signifikant an stratosphärischen Ozonabbauprozessen beteiligt. Dabei ist die Bromkonzentration in der Stratosphäre zwar etwa 167-fach geringer als die Konzentration von Chlor, Brom ist pro Atom jedoch 60-65 mal effizienter im Abbau von Ozon. Obwohl seit Ende der 90-er Jahre eine Abnahme von (anorganischem) stratosphärischem Brom beobachtet wird, trägt es aktuellsten Studien zufolge zu einem globalen Ozonverlust von etwa 1/3 bei. In der unteren Stratosphäre der niedrigen Breiten kann es sogar bis zu 50% des Ozonverlusts verursachen. In dieser Arbeit wird das stratosphärische Bromsystem anhand ballongestützter Himmelsstreulichtmessungen von Brommonoxid (BrO) unter Verwendung der Differentiellen Optischen Absorptionsspektroskopie (DOAS) Methode analysiert. Dabei ermöglichen Strahlungstransportrekonstruktionen in Kombination mit Inversionsverfahren und Simulationen des dreidimensionalen chemischen Transportmodells SLIMCAT die Ableitung von BrO Konzentrationen als Funktion der Höhe. Für die im Spätsommer 2014 analysierte fünf Jahre alte Luft der mittleren Breiten lässt sich daraus das anorganische stratosphärische Brom (Bry) bzw. das gesamte Brom in der Stratosphäre zu 21.4 ± 4.8 ppt bestimmen. Weitere Untersuchungen befassen sich mit dem photochemischen Tagesgang des Bromsystems. Hierzu werden BrO DOAS Messungen mit Modellstudien eines eindimensionalen photochemischen Modells verglichen, um die Umwandlung von BrO in das nächtliche Reservoirgas Bromnitrat (BrONO2) sowie dessen Rückreaktion anhand der Reaktionsrate kBrO+NO2 respektive der Photolyserate J(BrONO2) zu quantifizieren. Die Ergebnisse weisen dabei ein 1.5 (+0.8 − 0.4) mal größeres J(BrONO2)/kBrO+NO2 Verhältnis auf, als es mit photochemischen Parametern der aktuellsten Jet Propulsion Laboratory (JPL)-Zusammenstellung erwartet wird. Diese Beobachtungen implizieren eine Verschiebung der Zusammensetzung im Bromsystem zu mehr BrO bzw. weniger BrONO2

    Probing relaxation times in graphene quantum dots

    Get PDF
    Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dot devices have been extensively investigated with respect to their excitation spectrum, spin-filling sequence, and electron-hole crossover. However their relaxation dynamics remain largely unexplored. This is mainly due to challenges in device fabrication, in particular regarding the control of carrier confinement and the tunability of the tunnelling barriers, both crucial to experimentally investigate decoherence times. Here, we report on pulsed-gate transient spectroscopy and relaxation time measurements of excited states in graphene quantum dots. This is achieved by an advanced device design, allowing to tune the tunnelling barriers individually down to the low MHz regime and to monitor their asymmetry with integrated charge sensors. Measuring the transient currents through electronic excited states, we estimate lower limit of charge relaxation times on the order of 60-100 ns.Comment: To be published in Nature Communications. The first two authors contributed equally to this work. Main article: 10 pages, 4 figures. Supplementary information: 4 pages, 4 figure

    Diurnal variations of BrONOâ‚‚ observed by MIPAS-B at midlatitudes and in the Arctic

    Get PDF
    The first stratospheric measurements of the diurnal variation in the inorganic bromine (Bry) reservoir species BrONO2 around sunrise and sunset are reported. Arctic flights of the balloon-borne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B) were carried out from Kiruna (68° N, Sweden) in January 2010 and March 2011 inside the stratospheric polar vortices where diurnal variations of BrONO2 around sunrise have been observed. High nighttime BrONO2 volume mixing ratios of up to 21 pptv (parts per trillion by volume) were detected in late winter 2011 in the absence of polar stratospheric clouds (PSCs). In contrast, the amount of measured BrONO2 was significantly lower in January 2010 due to low available NO2 amounts (for the build-up of BrONO2), the heterogeneous destruction of BrONO2 on PSC particles, and the gas-phase interaction of BrO (the source to form BrONO2) with ClO. A further balloon flight took place at midlatitudes from Timmins (49° N, Canada) in September 2014. Mean BrONO2 mixing ratios of 22 pptv were observed after sunset in the altitude region between 21 and 29 km. Measurements are compared and discussed with the results of a multi-year simulation performed with the chemistry climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). The calculated temporal variation in BrONO2 largely reproduces the balloon-borne observations. Using the nighttime simulated ratio between BrONO2 and Bry, the amount of Bry observed by MIPAS-B was estimated to be about 21–25 pptv in the lower stratosphere
    corecore