1,920 research outputs found

    A Solvable Model for Nonlinear Mean Field Dynamo

    Get PDF
    We formulate a solvable model that describes generation and saturation of mean magnetic field in a dynamo with kinetic helicity, in the limit of large magnetic Prandtl number. This model is based on the assumption that the stochastic part of the velocity field is Gaussian and white in time (the Kazantsev-Kraichnan ensemble), while the regular part describing the back reaction of the magnetic field is chosen from balancing the viscous and Lorentz stresses in the MHD Navier-Stokes equation. The model provides an analytical explanation for previously obtained numerical results.Comment: 6 page

    Turbulent magnetic dynamo excitation at low magnetic Prandtl number

    Full text link
    Planetary and stellar dynamos likely result from turbulent motions in magnetofluids with kinematic viscosities that are small compared to their magnetic diffusivities. Laboratory experiments are in progress to produce similar dynamos in liquid metals. This work reviews recent computations of thresholds in critical magnetic Reynolds number above which dynamo amplification can be expected for mechanically-forced turbulence (helical and non-helical, short wavelength and long wavelength) as a function of the magnetic Prandtl number PMP_M. New results for helical forcing are discussed, for which a dynamo is obtained at PM=5×10−3P_M=5\times10^{-3}. The fact that the kinetic turbulent spectrum is much broader in wavenumber space than the magnetic spectrum leads to numerical difficulties which are bridged by a combination of overlapping direct numerical simulations and subgrid models of magnetohydrodynamic turbulence. Typically, the critical magnetic Reynolds number increases steeply as the magnetic Prandtl number decreases, and then reaches an asymptotic plateau at values of at most a few hundred. In the turbulent regime and for magnetic Reynolds numbers large enough, both small and large scale magnetic fields are excited. The interactions between different scales in the flow are also discussed.Comment: 8 pages, 8 figures, to appear in Physics of Plasma

    Point force manipulation and activated dynamics of polymers adsorbed on structured substrates

    Full text link
    We study the activated motion of adsorbed polymers which are driven over a structured substrate by a localized point force.Our theory applies to experiments with single polymers using, for example, tips of scanning force microscopes to drag the polymer.We consider both flexible and semiflexible polymers,and the lateral surface structure is represented by double-well or periodic potentials. The dynamics is governed by kink-like excitations for which we calculate shapes, energies, and critical point forces. Thermally activated motion proceeds by the nucleation of a kink-antikink pair at the point where the force is applied and subsequent diffusive separation of kink and antikink. In the stationary state of the driven polymer, the collective kink dynamics can be described by an one-dimensional symmetric simple exclusion process.Comment: 7 pages, 2 Figure

    Hall-MHD small-scale dynamos

    Get PDF
    Much of the progress in our understanding of dynamo mechanisms has been made within the theoretical framework of magnetohydrodynamics (MHD). However, for sufficiently diffuse media, the Hall effect eventually becomes non-negligible. We present results from three dimensional simulations of the Hall-MHD equations subjected to random non-helical forcing. We study the role of the Hall effect in the dynamo efficiency for different values of the Hall parameter, using a pseudospectral code to achieve exponentially fast convergence. We also study energy transfer rates among spatial scales to determine the relative importance of the various nonlinear effects in the dynamo process and in the energy cascade. The Hall effect produces a reduction of the direct energy cascade at scales larger than the Hall scale, and therefore leads to smaller energy dissipation rates. Finally, we present results stemming from simulations at large magnetic Prandtl numbers, which is the relevant regime in hot and diffuse media such a the interstellar medium.Comment: 11 pages and 11 figure

    Stochastic Flux-Freezing and Magnetic Dynamo

    Full text link
    We argue that magnetic flux-conservation in turbulent plasmas at high magnetic Reynolds numbers neither holds in the conventional sense nor is entirely broken, but instead is valid in a novel statistical sense associated to the "spontaneous stochasticity" of Lagrangian particle tra jectories. The latter phenomenon is due to the explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of Laplacian determinism for classical dynamics. We discuss empirical evidence for spontaneous stochasticity, including our own new numerical results. We then use a Lagrangian path-integral approach to establish stochastic flux-freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion, that flux-conservation must remain stochastic at infinite magnetic Reynolds number. As an important application of these results we consider the kinematic, fluctuation dynamo in non-helical, incompressible turbulence at unit magnetic Prandtl number. We present results on the Lagrangian dynamo mechanisms by a stochastic particle method which demonstrate a strong similarity between the Pr = 1 and Pr = 0 dynamos. Stochasticity of field-line motion is an essential ingredient of both. We finally consider briefly some consequences for nonlinear MHD turbulence, dynamo and reconnectionComment: 29 pages, 10 figure

    Nonlinear magneto-optical resonances at D1 excitation of 85Rb and 87Rb in an extremely thin cell

    Full text link
    Nonlinear magneto-optical resonances have been measured in an extremely thin cell (ETC) for the D1 transition of rubidium in an atomic vapor of natural isotopic composition. All hyperfine transitions of both isotopes have been studied for a wide range of laser power densities, laser detunings, and ETC wall separations. Dark resonances in the laser induced fluorescence (LIF) were observed as expected when the ground state total angular momentum F_g was greater than or equal to the excited state total angular momentum F_e. Unlike the case of ordinary cells, the width and contrast of dark resonances formed in the ETC dramatically depended on the detuning of the laser from the exact atomic transition. A theoretical model based on the optical Bloch equations was applied to calculate the shapes of the resonance curves. The model averaged over the contributions from different atomic velocity groups, considered all neighboring hyperfine transitions, took into account the splitting and mixing of magnetic sublevels in an external magnetic field, and included a detailed treatment of the coherence properties of the laser radiation. Such a theoretical approach had successfully described nonlinear magneto-optical resonances in ordinary vapor cells. Although the values of certain model parameters in the ETC differed significantly from the case of ordinary cells, the same physical processes were used to model both cases. However, to describe the resonances in the ETC, key parameters such as the transit relaxation rate and Doppler width had to be modified in accordance with the ETC's unique features. Agreement between the measured and calculated resonance curves was satisfactory for the ETC, though not as good as in the case of ordinary cells.Comment: v2: substantial changes and expanded theoretical model; 13 pages, 10 figures; accepted for publication in Physical Review

    Universal Nonlinear Small-Scale Dynamo

    Full text link
    We consider astrophysically relevant nonlinear MHD dynamo at large Reynolds numbers (Re). We argue that it is universal in a sense that magnetic energy grows at a rate which is a constant fraction C_E of the total turbulent dissipation rate. On the basis of locality bounds we claim that this "efficiency of small-scale dynamo", C_E, is a true constant for large Re and is determined only by strongly nonlinear dynamics at the equipartition scale. We measured C_E in numerical simulations and observed a value around 0.05 in highest resolution simulations. We address the issue of C_E being small, unlike Kolmogorov constant which is of order unity.Comment: 4 pages 3 figure

    Is nonhelical hydromagnetic turbulence peaked at small scales?

    Full text link
    Nonhelical hydromagnetic turbulence without an imposed magnetic field is considered in the case where the magnetic Prandtl number is unity. The magnetic field is entirely due to dynamo action. The magnetic energy spectrum peaks at a wavenumber of about 5 times the minimum wavenumber in the domain, and not at the resistive scale, as has previously been argued. Throughout the inertial range the spectral magnetic energy exceeds the kinetic energy by a factor of about 2.5, and both spectra are approximately parallel. At first glance, the total energy spectrum seems to be close to k^{-3/2}, but there is a strong bottleneck effect and it is suggested that the asymptotic spectrum is k^{-5/3}. This is supported by the value of the second order structure function exponent that is found to be \zeta_2=0.70, suggesting a k^{-1.70} spectrum.Comment: 6 pages, 6 figure

    Self-similar turbulent dynamo

    Full text link
    The amplification of magnetic fields in a highly conducting fluid is studied numerically. During growth, the magnetic field is spatially intermittent: it does not uniformly fill the volume, but is concentrated in long thin folded structures. Contrary to a commonly held view, intermittency of the folded field does not increase indefinitely throughout the growth stage if diffusion is present. Instead, as we show, the probability-density function (PDF) of the field strength becomes self-similar. The normalized moments increase with magnetic Prandtl number in a powerlike fashion. We argue that the self-similarity is to be expected with a finite flow scale and system size. In the nonlinear saturated state, intermittency is reduced and the PDF is exponential. Parallels are noted with self-similar behavior recently observed for passive-scalar mixing and for map dynamos.Comment: revtex, 4 pages, 5 figures; minor changes to match published versio

    Steady state existence of passive vector fields under the Kraichnan model

    Full text link
    The steady state existence problem for Kraichnan advected passive vector models is considered for isotropic and anisotropic initial values in arbitrary dimension. The model includes the magnetohydrodynamic (MHD) equations, linear pressure model (LPM) and linearized Navier-Stokes (LNS) equations. In addition to reproducing the previously known results for the MHD and linear pressure model, we obtain the values of the Kraichnan model roughness parameter ξ\xi for which the LNS steady state exists.Comment: Improved text & figures, added references & other correction
    • …
    corecore