12 research outputs found

    Epidemiological study of Q fever in humans, ruminant animals, and ticks in Cyprus using a geographical information system

    No full text
    A cross-sectional study of Q fever was conducted in a representative sample of the human and animal population in Cyprus in order to assess the seroprevalence of Q fever and the prevalence of related risk factors. A total of 583 human and 974 ruminant animal serum samples were collected and tested for the detection of antibodies against Coxiella burnetii phase II antigen using an indirect immunofluorescent assay. One hundred forty-one ticks were collected from the infested animals examined; the polymerase chain reaction and the shell-vial technique were used to detect and isolate C. burnetii. Standardized questionnaires were used to obtain information concerning inhabitants and their animals. A geographical information system was used to identify high-risk regions. The prevalence of IgG antibodies against C. burnetii phase II antigen was estimated at 52.7% for humans, 48.2% for goats, 18.9% for sheep, and 24% for bovines. C. burnetii was detected in 11 (7.8%) ticks. Using the geographical information system, two villages were identified as high-risk regions on the basis of high seroprevalence rates of IgG antibodies in humans and animals. Risk factors related to Q fever seropositivity were identified by logistic regression analysis and included age, residence, occupation, use of manure in the garden, ownership of animals (especially goats), and the presence of tick-infested or aborting animals. Q fever poses an occupational hazard to humans living in close contact with sheep and/or goats. In parallel, ticks should be considered an important aspect in the epidemiology of Q fever and should be further studied to better elucidate their role

    From Q Fever to Coxiella burnetii Infection: a Paradigm Change

    No full text
    International audienceCoxiella burnetii is the agent of Q fever, or ``query fever,'' a zoonosis first described in Australia in 1937. Since this first description, knowledge about this pathogen and its associated infections has increased dramatically. We review here all the progress made over the last 20 years on this topic. C. burnetii is classically a strict intracellular, Gram-negative bacterium. However, a major step in the characterization of this pathogen was achieved by the establishment of its axenic culture. C. burnetii infects a wide range of animals, from arthropods to humans. The genetic determinants of virulence are now better known, thanks to the achievement of determining the genome sequences of several strains of this species and comparative genomic analyses. Q fever can be found worldwide, but the epidemiological features of this disease vary according to the geographic area considered, including situations where it is endemic or hyperendemic, and the occurrence of large epidemic outbreaks. In recent years, a major breakthrough in the understanding of the natural history of human infection with C. burnetii was the breaking of the old dichotomy between ``acute'' and ``chronic'' Q fever. The clinical presentation of C. burnetii infection depends on both the virulence of the infecting C. burnetii strain and specific risks factors in the infected patient. Moreover, no persistent infection can exist without a focus of infection. This paradigm change should allow better diagnosis and management of primary infection and long-term complications in patients with C. burnetii infection
    corecore