6 research outputs found

    Under-Sampled Reconstruction Techniques for Accelerated Magnetic Resonance Imaging

    Get PDF
    Due to physical and biological constraints and requirements on the minimum resolution and SNR, the acquisition time is relatively long in magnetic resonance imaging (MRI). Consequently, a limited number of pulse sequences can be run in a clinical MRI session because of constraints on the total acquisition time due to patient comfort and cost considerations. Therefore, it is strongly desired to reduce the acquisition time without compromising the reconstruction quality. This thesis concerns under-sampled reconstruction techniques for acceleration of MRI acquisitions, i.e., parallel imaging and compressed sensing. While compressed sensing MRI reconstructions are commonly regularized by penalizing the decimated wavelet transform coefficients, it is shown in this thesis that the visual artifacts, associated with the lack of translation-invariance of the wavelet basis in the decimated form, can be avoided by penalizing the undecimated wavelet transform coefficients, i.e., the stationary wavelet transform (SWT). An iterative SWT thresholding algorithm for combined SWT-regularized compressed sensing and parallel imaging reconstruction is presented. Additionally, it is shown that in MRI applications involving multiple sequential acquisitions, e.g., quantitative T1/T2 mapping, the correlation between the successive acquisitions can be incorporated as an additional constraint for joint under-sampled reconstruction, resulting in improved reconstruction performance. While quantitative measures of quality, e.g., reconstruction error with respect to the fully-sampled reference, are commonly used for performance evaluation and comparison of under-sampled reconstructions, this thesis shows that such quantitative measures do not necessarily correlate with the subjective quality of reconstruction as perceived by radiologists and other expert end users. Therefore, unless accompanied by subjective evaluations, quantitative quality measurements/comparisons will be of limited clinical impact. The results of experiments aimed at subjective evaluation/comparison of different under-sampled reconstructions for specific clinical neuroimaging MRI applications are presented in this thesis. One motivation behind the current work was to reduce the acquisition time for relaxation mapping techniques DESPOT1 and DESPOT2. This work also includes a modification to the Driven Equilibrium Single Pulse Observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI), resulting in more accurate estimation of T1 values at high strength (3T and higher) magnetic fields

    Using learned under-sampling pattern for increasing speed of cardiac cine MRI based on compressive sensing principles

    Get PDF
    Abstract This article presents a compressive sensing approach for reducing data acquisition time in cardiac cine magnetic resonance imaging (MRI). In cardiac cine MRI, several images are acquired throughout the cardiac cycle, each of which is reconstructed from the raw data acquired in the Fourier transform domain, traditionally called k-space. In the proposed approach, a majority, e.g., 62.5%, of the k-space lines (trajectories) are acquired at the odd time points and a minority, e.g., 37.5%, of the k-space lines are acquired at the even time points of the cardiac cycle. Optimal data acquisition at the even time points is learned from the data acquired at the odd time points. To this end, statistical features of the k-space data at the odd time points are clustered by fuzzy c-means and the results are considered as the states of Markov chains. The resulting data is used to train hidden Markov models and find their transition matrices. Then, the trajectories corresponding to transition matrices far from an identity matrix are selected for data acquisition. At the end, an iterative thresholding algorithm is used to reconstruct the images from the under-sampled k-space datasets. The proposed approaches for selecting the k-space trajectories and reconstructing the images generate more accurate images compared to alternative methods. The proposed under-sampling approach achieves an acceleration factor of 2 for cardiac cine MRI

    Diagnostic quality assessment of compressed sensing accelerated magnetic resonance neuroimaging.

    Get PDF
    PURPOSE: To determine the efficacy of compressed sensing (CS) reconstructions for specific clinical magnetic resonance neuroimaging applications beyond more conventional acceleration techniques such as parallel imaging (PI) and low-resolution acquisitions. MATERIALS AND METHODS: Raw k-space data were acquired from five healthy volunteers on a 3T scanner using a 32-channel head coil using T2 -FLAIR, FIESTA-C, time of flight (TOF), and spoiled gradient echo (SPGR) sequences. In a series of blinded studies, three radiologists independently evaluated CS, PI (GRAPPA), and low-resolution images at up to 5Ă— accelerations. Synthetic T2 -FLAIR images with artificial lesions were used to assess diagnostic accuracy for CS reconstructions. RESULTS: CS reconstructions were of diagnostically acceptable quality at up to 4Ă— acceleration for T2 -FLAIR and FIESTA-C (average qualitative scores 3.7 and 4.3, respectively, on a 5-point scale at 4Ă— acceleration), and at up to 3Ă— acceleration for TOF and SPGR (average scores 4.0 and 3.7, respectively, at 3Ă— acceleration). The qualitative scores for CS reconstructions were significantly better than low-resolution images for T2 -FLAIR, FIESTA-C, and TOF and significantly better than GRAPPA for TOF and SPGR (Wilcoxon signed rank test, P \u3c 0.05) with no significant difference found otherwise. Diagnostic accuracy was acceptable for both CS and low-resolution images at up to 3Ă— acceleration (area under the ROC curve 0.97 and 0.96, respectively.) CONCLUSION: Mild to moderate accelerations are possible for those sequences by a combined CS and PI reconstruction. Nevertheless, for certain sequences/applications one might mildly reduce the acquisition time by appropriately reducing the imaging resolution rather than the more complicated CS reconstruction. J. Magn. Reson. Imaging 2016;44:433-444

    Stationary wavelet transform for under-sampled MRI reconstruction.

    Get PDF
    In addition to coil sensitivity data (parallel imaging), sparsity constraints are often used as an additional lp-penalty for under-sampled MRI reconstruction (compressed sensing). Penalizing the traditional decimated wavelet transform (DWT) coefficients, however, results in visual pseudo-Gibbs artifacts, some of which are attributed to the lack of translation invariance of the wavelet basis. We show that these artifacts can be greatly reduced by penalizing the translation-invariant stationary wavelet transform (SWT) coefficients. This holds with various additional reconstruction constraints, including coil sensitivity profiles and total variation. Additionally, SWT reconstructions result in lower error values and faster convergence compared to DWT. These concepts are illustrated with extensive experiments on in vivo MRI data with particular emphasis on multiple-channel acquisitions
    corecore