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Stationary wavelet transform for under-
sampled MRI reconstruction 

Mohammad H. Kayvanrad*,1,2, A. Jonathan McLeod1,2, John S.H. Baxter1,2, 
Charles A. McKenzie1,2,3, Terry M. Peters1,2,3 

Abstract 
In addition to coil sensitivity data (parallel imaging), sparsity constraints are often 
used as an additional 𝑙𝑝-penalty for under-sampled MRI reconstruction 

(compressed sensing). Penalizing the traditional decimated wavelet transform 
(DWT) coefficients, however, results in visual pseudo-Gibbs artifacts, some of which 
are attributed to the lack of translation invariance of the wavelet basis. We show 
that these artifacts can be greatly reduced by penalizing the translation-invariant 
stationary wavelet transform (SWT) coefficients. This holds with various additional 
reconstruction constraints, including coil sensitivity profiles and total variation. 
Additionally, SWT reconstructions result in lower error values and faster 
convergence compared to DWT. These concepts are illustrated with extensive 
experiments on in vivo MRI data with particular emphasis on multiple-channel 
acquisitions. 
 
Index terms: MRI reconstruction, Accelerated MR imaging, K-space under-
sampling, Sparse reconstruction, Compressed sensing, Parallel imaging 
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Introduction 
Cost considerations and patient comfort limit the total acceptable acquisition time 
in magnetic resonance imaging (MRI). On the other hand, it is necessary to acquire 
high-resolution images with high signal-to-noise ratio (SNR) for some applications. 
However, the SNR in MRI is proportional to the voxel volume and the square root of 
the acquisition time [1], which implies that high resolution and SNR are only 
achieved at the expense of long acquisition times. This in turn limits the number of 
pulse sequences that can be run in a clinical examination, which consequently limits 
the information that can be obtained. Therefore, there has been a strong motivation 
to reduce the acquisition time without compromising the resolution or the SNR of 
the MR images, since the introduction of this modality. 
 
In addition to parallel imaging techniques [2]–[4], another approach to improving 
the trade-off between the acquisition time and the resolution is the acquisition of 
under-sampled k-space data and the use of the sparsity of the image in a transform 
domain, as an a priori reconstruction constraint, to interpolate the missing data. 
This approach is commonly referred to as compressed sensing or compressive 
sampling (CS) [5]–[8] and can be used in conjunction with parallel imaging [9]. 
 
Wavelet sparsity is commonly used as a reconstruction constraint in compressed 
sensing and sparse recovery applications. Conventionally, a weighted 𝑙𝑝-penalty on 

the decimated wavelet transform (DWT1) coefficients is used as a regularization 
term and the reconstruction problem is generally formulated as a constrained 
optimization- see [6]–[8], [10] and references therein. 
 
It is well established in wavelet denoising that thresholding with the traditional 
DWT often results in pseudo-Gibbs artifacts, which are connected to the 
misalignment between the image features and the features of the wavelet basis [11]. 
For example, in Figure 1 a shift in the image results in misalignment between the 
image features and those of the wavelet basis after the shift (Figure 1(b)), which 
consequently results in a less sparse wavelet decomposition than that of the original 
image where the image features are deliberately chosen to match those of the 
wavelet basis (Figure 1(a)). Note that the shift does not change the energy of signal 
but after the shift the energy is spread over more [smaller] coefficients. A sparse 
decomposition is desirable in denoising as well as in sparse recovery applications 
since it allows the original features of the image to be distinguished from the noise 
or aliasing artifacts (and therefore enabling us to efficiently remove noise/artifacts, 
e.g., by thresholding) [7], [11]. This is pictorially shown in Figure 1 where 
thresholding results in visual reconstruction artifacts in Figure 1(b) due to the 
removal of a number of wavelet coefficients that fall below the threshold in the less 

                                                        
1 DWT is also commonly used to abbreviate discrete wavelet transform. Since in this article we are 
essentially considering discrete cases only, any mention of the wavelet transform refers to the 
discrete wavelet transform (either decimated or undecimated). We use the abbreviation DWT to 
distinguish the decimated [discrete] wavelet transform from its undecimated version, i.e., the 
stationary wavelet transform (SWT). 



sparse representation. (Obviously, in this example one can avoid the artifacts by 
choosing a smaller threshold that maintains all the coefficients, but in practice a too 
small threshold fails to remove the noise/artifacts resulting in poor 
denoising/reconstruction. In this example the threshold is chosen to be 1/4th of the 
largest coefficient, for the sake of illustration.) The effect of the choice of the 
threshold in practice is more thoroughly investigated in the Results section. 
 

 

Figure 1-Illustration of the lack of translation invariance of DWT and the resulting 
thresholding artifacts: A simple test image- an 8x8 square in the middle of a 16x16 black 
background (a) and a shifted version of it (b) are decomposed with the Haar wavelet to 1 
level. The original image is deliberately chosen to align with the wavelet basis, resulting in a 
very sparse decomposition. The shift, however, results in a misalignment between the 
image features and those of the wavelet basis functions, which, consequently, results in 
noticeable loss of the sparsity of the decomposition. In each case, the decomposition 
coefficients are hard thresholded and a wavelet reconstruction (IDWT) is performed on the 
thresholded coefficients. Dashed circles highlight the reconstruction artifacts. 



 
One could possibly avoid the misalignment between the image features and those of 
the wavelet basis by shifting the image or the basis functions to make them aligned. 
However, this requires a priori knowledge of the best aligning shift. Furthermore, 
when the image contains several discontinuities, there may not be a single shift that 
works for all the discontinuities- the best shift for one may be the worst for the 
other. Consequently, Coifman and Donoho proposed the idea of “translation-
invariant denoising,” i.e., average[shift-denoise-unshift] for several (or all possible) 
shifts [11]. This, in practice, is often achieved by stationary wavelet transform 
(SWT) thresholding, which provides a translation-invariant basis [12], [13]. For the 
sake of completeness, a brief description of SWT based on [12] follows. For 
simplicity, we consider the 1D discrete case only- extension to 2D is straight 
forward. 
 
DWT decomposition of a signal 𝑥(𝑡) results in the scaling (approximation) and 
wavelet (detail) coefficients: 
 

𝑐𝑗
𝑘 = 〈𝑥(𝑡), 2−𝑗 2⁄ 𝜑 (

𝑡

2𝑗
− 𝑘)〉  (1) 
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2𝑗
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where 𝜑(𝑡), and 𝜓(𝑡), are the scaling and wavelet functions, respectively, and 𝑗 and 
𝑘 amount to the scaling and translation of the wavelet basis, respectively. 
 
For SWT, a redundant decomposition can be obtained as, 
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where 𝑝 ∈ {0,⋯ , 2𝑗 − 1} allows for all the possible shifts in a discrete setting. 

 
For decomposition to 𝑗𝑚 levels, 2𝑗𝑚  different orthogonal bases can be generated. 
The different possible choices can be illustrated by a binary tree in the form of 
Figure 2. Each node in this tree is indexed by parameters (𝑗, 𝑝), to which the set of 

coefficients {�̃�
2𝑗
2𝑗𝑘+𝑝

}
𝑘∈ℤ

 is associated. Each path from the root of the tree to a leaf 

corresponds to the set of functions {2−𝑗 2⁄ 𝜓[(𝑡 − 𝑝𝑗) 2
𝑗⁄ − 𝑘], 𝑘 ∈ ℤ, 1 ≤ 𝑗 ≤ 𝑗𝑚} ∪

{2−𝑗𝑚 2⁄ 𝜑[(𝑡 − 𝑝𝑗𝑚) 2
𝑗𝑚⁄ − 𝑘], 𝑘 ∈ ℤ}, which forms an orthogonal wavelet basis, 

resulting in a standard wavelet reconstruction. The inverse SWT is often defined as 
the average of all the 2𝑗𝑚  different reconstructions obtained in this manner. 
 



 

Figure 2- Shift-localization tree for a three level stationary wavelet transform (SWT) 
decomposition. Each node is indexed by parameters(𝑗, 𝑝), where 𝑗 is the decomposition 
level and 𝑝 is the shift. For clarity, the binary representation of 𝑝 is shown in brackets. 

 
While SWT is predominantly used in wavelet denoising, to the best of our 
knowledge, the use of SWT in compressed sensing and sparse recovery applications, 
particularly in under-sampled MRI reconstruction, has not been explored before. 
The key idea here is that the 𝑙𝑝-penalty on the DWT coefficients essentially results in 

the same sort of artifacts described above, which can be avoided or reduced by 
penalizing the SWT coefficients. 
 
The intent of this article is to call attention to the benefits of the use of SWT in place 
of DWT for compressed sensing and sparse recovery, with particular focus on MRI 
reconstruction from under-sampled k-space data. Although use of SWT for such 
applications may seem counter intuitive, since it is a redundant transform, we show 
that significant improvement in reconstruction quality is achieved by replacing the 
𝑙𝑝-penalty on the DWT coefficients with one on the SWT coefficients. This holds 

even with additional constraints, including total variation (TV) penalties or coil 
sensitivity constraints when compressed sensing is combined with parallel imaging. 
 
Furthermore, a few authors have recently reported the use of DWT with random 
shifts (DWTRS) [14] to address the DWT translation variance problem for 
compressed sensing and sparse recovery applications [15], [16]. In this article, use 
of random shifts with decimated wavelet transform is also considered in 



comparison with the conventional decimated wavelet transform as well as its 
undecimated version, i.e., SWT. 
 
In should be noted that several extensions to the wavelet transform, including the 
dual-tree wavelet transform [17], contourlets [18], and curvelets [19], have been 
used for compressed sensing applications, including MRI reconstruction, to address 
specific limitations of the regular decimated wavelet transform [20]–[23]. However, 
a comprehensive study/comparison of all these transforms is beyond the scope of 
this work. This work compares variations of the standard discrete wavelet 
transform, i.e., in its commonly-used decimated form (DWT), with random shifts 
(DWTRS), and its undecimated version (SWT). Note that unlike other extensions, 
such as dual-tree wavelets, curvelets, and contourlets, these transforms are directly 
based on the standard wavelet transform, e.g., they are all based on the same 
wavelet and scaling functions and only differ in terms of shift and/or decimation. As 
noted, our main intention is to call attention to the advantages of the redundant 
shift-invariant version of the standard discrete wavelet transform, i.e., SWT, in 
comparison with its decimated versions, i.e., DWT, and DWTRS, which is the most 
widely studied sparsifying transform and most commonly used in practice as the 
state-of-the-art reconstruction by several authors (see for example [16], [24], [25]). 
 
In addition to reduced visual artifacts, SWT results in significantly lower 
reconstruction error as well as faster convergence. Furthermore, despite its 
redundancy, it can be computed rapidly- in 𝑛 log(𝑛) time [11]. 
 
All these concepts are illustrated by extensive experiments with different 
reconstruction techniques, all of which are reproducible using the supplementary 
code provided with this paper or the code supplied by the authors cited in this 
paper. 

Stationary wavelet transform sparse recovery 
In the discussion that follows we perform a point spread function (PSF)2 analysis to 
demonstrate the performance of SWT thresholding in comparison with DWT 
thresholding for removing under-sampling aliasing artifacts. A computational 
experiment with the Shepp-Logan phantom is also presented to illustrate the visual 
artifacts in the DWT reconstruction compared with those in the SWT reconstruction. 
 
Let 𝑓(𝑚, 𝑛) = 𝛿(𝑚, 𝑛) be an impulse input in the spatial domain, where 𝛿(𝑚, 𝑛) =

{
1 𝑚 = 0, 𝑛 = 0
0 otherwise

. Transforming 𝑓 to the Fourier domain, under-sampling, and 

transforming back to the spatial domain results in the k-space under-sampling PSF, 
𝑓𝑢 (Figure 3(a)): 

                                                        
2 A linear shift-invariant imaging system can be completely described in terms of its point spread 
function (PSF). Although thresholding is a non-linear operation, we still use the PSF for 
illustration/comparison of the artifacts. 



 
𝑓𝑢 = ℱ

−1𝑈𝐹ℱ𝑓  (5) 
 

where 𝑈𝐹 is the Fourier (k-space) under-sampling operation and ℱ is the Fourier 
transform. 
 
Now consider the wavelet decomposition of 𝑓𝑢 using DWT and SWT: 𝐶𝐷𝑊𝑇 =
𝜓𝐷𝑊𝑇𝑓𝑢, and 𝐶𝑆𝑊𝑇 = 𝜓𝑆𝑊𝑇𝑓𝑢 , where 𝜓𝐷𝑊𝑇 and 𝜓𝑆𝑊𝑇 are the decimated and 
stationary wavelet transforms, and 𝐶𝐷𝑊𝑇 and 𝐶𝑆𝑊𝑇 are the corresponding wavelet 
decomposition coefficients. Assume a thresholding operation, 𝛾, acting on the 
decomposition coefficients: �̃�𝐷𝑊𝑇 = 𝛾(𝐶𝐷𝑊𝑇), and �̃�𝑆𝑊𝑇 = 𝛾(𝐶𝑆𝑊𝑇). The 
corresponding PSFs are computed by wavelet reconstruction of the thresholded 
coefficients: 𝑓𝐷𝑊𝑇 = 𝜓𝐷𝑊𝑇

∗ �̃�𝐷𝑊𝑇, and 𝑓𝑆𝑊𝑇 = 𝜓𝑆𝑊𝑇
∗ �̃�𝑆𝑊𝑇. Figure 3(b, c) show the DWT 

and SWT soft thresholding PSFs, respectively. The same threshold, chosen using the 
Birgé-Massart strategy [26], is used with both DWT and SWT. (The choice of the 
threshold and its effect on the reconstruction is more thoroughly investigated in the 
Results section.) Note that with the assumption of under-sampling in the phase-
encode (𝑘𝑦) direction only, the point spread functions can be sufficiently illustrated 

with 1D plots. An example of the reduction of the artifacts by SWT thresholding 
compared to DWT thresholding is highlighted. Several such reductions can be easily 
identified on the PSFs. As illustrated in Figure 3, SWT thresholding results in 
noticeably fewer artifacts than the corresponding DWT thresholding. 
 



 

Figure 3- Point spread functions (PSF) resulting from k-space under-sampling (a) 
followed by the application of DWT and SWT soft thresholding (b and c, 
respectively). An example of reduced artifacts by SWT thresholding in comparison 
with DWT thresholding is highlighted. 
 
Since the aliasing artifacts are incoherent3, the signal-to-alias ratio, defined as the 
energy of the signal (i.e., the peak in this case) to the energy of the alias (i.e., the 
side-lobes in this case) of the PSFs, provides a quantitative means of comparing 
these PSFs with each other and with the under-sampling PSF (Table 1). The higher 
signal-to-alias ratio achieved by SWT thresholding also indicates less aliasing 
interference. 
 

 Signal-to-alias ratio 

Under-sampling PSF 0.506 

DWT thresholding PSF 0.647 

SWT thresholding PSF 0.912 

                                                        
3 In compressed sensing, it is desired to have incoherent (noise-like) under-sampling artifacts so that 
they can be distinguished from the original signal/image features in the sparse domain [7]. The 
incoherence is often achieved through random under-sampling. 



Table 1- Signal-to-alias ratios corresponding to the point spread functions (PSF) in 
Figure 3. 
 
In order to illustrate the nature of the artifacts associated with the DWT 
reconstruction, consider the computational experiment of reconstruction of the 
Shepp-Logan phantom (Figure 4(a)) from under-sampled frequency domain data. 
For the sake of illustration, and since Cartesian sampling is by far the most common 
way of acquiring k-space data in MRI, we assume Cartesian under-sampling in the 𝑦 
direction (corresponding to under-sampling in the phase-encode direction in an 
MRI application). 
 

 

Figure 4- Reconstruction of the Shepp-Logan phantom from Cartesian under-sampled 
frequency data by DWT/SWT-𝑙1(+TV) penalized optimization. 

 

Figure 4(b,c) show the reconstruction of the under-sampled frequency domain data based 
on an 𝑙1 penalized optimization, i.e., min

𝑓⋆
‖𝜓𝑓⋆‖𝑙1s.t. ‖𝑈𝐹ℱ𝑓

⋆ − 𝐹𝑢‖𝑙2 <  휀, where the 

reconstruction in Figure 4(c) is achieved when 𝜓 = 𝜓𝐷𝑊𝑇 is a decimated wavelet transform 
and that of Figure 4(b) is achieved when 𝜓 = 𝜓𝑆𝑊𝑇 is the corresponding stationary wavelet 
transform. Here 𝑓⋆ denotes the reconstructed image, ℱ the Fourier transform, 𝑈𝐹 the 
under-sampling operation in the frequency domain, and 𝐹𝑢 the acquired frequency data. As 
shown in Figure 4(b,c), most of the artifacts present in the DWT reconstruction are absent 
in the SWT reconstruction.  

 
Furthermore, several authors have reported that it is often useful to include an 
additional total variation (TV) penalty in the reconstruction [7], [27]. Since all the 
previous works were based on penalizing the DWT coefficients, the TV term was 
needed to alleviate the associated artifacts. However, as illustrated by the above 
example, penalizing the SWT coefficients may reduce the need for the additional TV 
penalty. Nevertheless, as illustrated in Figure 4(d,e) SWT is preferred over DWT 
with an additional TV penalty, i.e., min

𝑓⋆
‖𝜓𝑓⋆‖𝑙1 +  𝛼𝑇𝑉(𝑓

⋆) s.t. ‖𝑈𝐹ℱ𝑓
⋆ − 𝐹𝑢‖𝑙2 <  휀, 

also. It should be noted that the Shepp-Logan phantom heavily favors a TV penalty 
(perfect reconstruction has been demonstrated for the Shepp-Logan phantom with a 
TV penalty with radial under-sampling [5]). Such drastic improvement with an 
additional TV term may not be observed with real MR images though. 



Methods 
Single channel spoiled gradient recalled (SPGR) data of a healthy volunteer were 
acquired at 3T (matrix: 256x256, resolution = 0.86mm isotropic, slice thickness = 
1mm, TE/TR = 4.1ms/8.9ms, BW = ±19.23 kHz, flip angle = 18˚, NEX = 1). Human 
data used in this work were acquired using a protocol approved by the University Of 
Western Ontario Office Of Research Ethics. 
 
k-space data were retrospectively under-sampled in the phase-encode direction and 
the under-sampled data were reconstructed by SWT 𝑙1 + TV penalized and DWT 𝑙1 + 
TV  penalized optimization, i.e., 
 

min
𝑓⋆
‖𝜓𝑓⋆‖𝑙1 +  𝛼𝑇𝑉(𝑓

⋆) s.t. ‖𝑈𝐹ℱ𝑓
⋆ − 𝐹𝑢‖𝑙2 <  휀 (6) 

 
with 𝜓 = 𝜓𝑆𝑊𝑇 and 𝜓 = 𝜓𝐷𝑊𝑇, respectively. The optimization was performed using 
the code provided by Lustig et al for [7]. 
 
In practice it is expected to achieve the best under-sampled reconstruction 
performance by the combined application of compressed sensing and parallel 
imaging. 
 
Iterative thresholding reconstruction [10] can be modified to directly incorporate 
the coil sensitivity profiles. The multiple-coil iterative thresholding reconstruction 
algorithm is shown in Table 2. 
 

Multiple-coil iterative thresholding reconstruction algorithm 
Inputs: 

𝐹𝑢,𝑖: Under-sampled k-space data (𝑖 = 1,… , 𝑁𝑐, where 𝑁𝑐  is the number of coils)  

𝑠𝑖: Coil sensitivities 
𝑈𝐹: Under-sampling operations selecting k-space data 

Output: 
 𝐹𝑖: Reconstructed k-space data 
Algorithm: 
 // Initialize to the minimum energy reconstruction 

for 𝑖 ← 1:𝑁𝑐  do 
𝐹𝑖 ← 𝐹𝑢,𝑖  

end 
  
 //Reconstruct through iterative thresholding 
 while not converged do 

//combine multiple channel data 

𝑓𝑜𝑝𝑡 ← ∑ 𝜔𝑖
𝑓𝑖

𝑠𝑖

𝑁𝑐
𝑖=1 //where  𝑓𝑖 = ℱ−1𝐹𝑖 and 𝜔𝑖 =

𝑠𝑖
2

∑ 𝑠𝑗
2𝑁𝑐

𝑗=1

 

 
//thresholding 

  𝑓 ← Γ(𝑓𝑜𝑝𝑡) // where the nonlinear thresholding operation Γ is defined as: Γ(f) =

 𝜓∗𝛾(𝜓𝑓), where 𝜓 denotes wavelet transform and 𝛾 denotes thresholding. 
 
  //data consistency 



for 𝑖 ← 1:𝑁𝑐  do 

�̃�𝑖 ← ℱ(𝑠𝑖𝑓) 
𝐹𝑖 ← �̃�𝑖 − 𝑈𝑓�̃�𝑖 + 𝐹𝑢,i 

end 
 end 

Table 2- Multiple-coil iterative thresholding reconstruction algorithm. ℱand Γ denote the 
Fourier transform and wavelet thresholding operations, respectively. 

 
A flow chart of the multiple-coil reconstruction procedure is shown in Figure 5. In 
Step 1 the combined-channels image is modulated by the coil sensitivity profile of 
each channel in order to make the combined-channels estimate consistent with the 
coil data before the data projection in Step 2, which enforces the data consistency 
constraint for each channel by projecting the current estimate onto the 
corresponding coil data [28]. In Step 3 data from multiple channels are combined to 
obtain a combined-channels estimate image. If coil sensitivities are explicitly 
available, an optimal combination has been shown by Roemer to be [29]: 
 

𝑓𝑜𝑝𝑡 = ∑ 𝜔𝑖
𝑓𝑖

𝑠𝑖

𝑁𝑐
𝑖=1  where 𝜔𝑖 =

𝑠𝑖
2

∑ 𝑠𝑗
2𝑁𝑐

𝑗=1

 (7) 

 
where 𝑓𝑖  is the image from the 𝑖th coil and 𝑠𝑖 is the corresponding coil sensitivity 
profile. In practice, the coil sensitivities are commonly extracted from fully-sampled 
low-resolution reference data4, which can be acquired prior to the main scan (pre-
calibration) or integral to the main scan (auto-calibration) by fully sampling a 
region over the center of k-space[30]. We use the latter approach to estimate the 
coil sensitivities.  
 

                                                        
4 A simple approach to computing the sensitivity profiles from reference data, which is commonly 
used in practice, is to divide each native coil image by the sum of squares [30]. 



 

Figure 5- Flowchart of the multiple-coil iterative thresholding reconstruction algorithm 

 
Finally, in Step 4, the sparsity constraint is enforced through a thresholding 
operation. 
 
The approach to incorporating coil sensitivity data in the reconstruction algorithm 
is similar to the POCS-based parallel imaging reconstruction algorithm described by 
Samsonov et al [28]. Note that this approach does not impose any constraint on the 
k-space under-sampling pattern. 



 
The multiple-coil reconstruction algorithm amounts to thresholded Landweber 
iterations, which has been proved to converge with soft thresholding by Daubechies 
[10]. Nevertheless, we also experimentally investigate reconstruction by hard 
thresholding to show the effectiveness of SWT with both soft and hard 
thresholding5. 
 
Brain images of a healthy volunteer were acquired at 3T using a 32-channel head 
coil with a 2D fast spin echo (FSE) pulse sequence (matrix: 256x256, resolution = 
1mm, slice thickness = 2mm, TR/TE = 3600ms/80ms, ETL = 15, BW = ±15.63 kHz, 
NEX = 1). A portion of k-space at the center was fully sampled to generate the low-
resolution auto-calibration data with the rest of k-space under-sampled with 
variable density in the phase encode direction. K-space data were then 
reconstructed by the multiple-coil iterative thresholding reconstruction algorithm 
with SWT (Γ = Γ𝑆𝑊𝑇) and DWT (Γ = Γ𝑆𝑊𝑇). The experiments were repeated for a 
range of under-sampling factors from 2 to 6. 
 
While the under-sampling pattern is chosen at random to achieve incoherent under-
sampling, it is known that the performance of compressed sensing reconstructions 
is affected by the choice of the under-sampling pattern. In order to avoid the 
possibility of randomly picking a “bad” under-sampling pattern, some authors have 
proposed to generate a number of under-sampling patterns and picking one that 
maximizes the incoherence [7], while in practice some other authors used pilot 
studies to pick the best under-sampling pattern for the data [25]. In order to 
consider the dependence on the random under-sampling pattern in general in our 
comparisons, repeated trials with 15 sets of random under-sampling patterns, 
generated independently, were carried out for each under-sampling factor, based on 
which the statistical significance of findings was evaluated using paired t-tests. 
 
It should be noted that with 2D under-sampling for 3D acquisitions a reasonable 
under-sampling pattern can be generated using a Poisson disk sampling scheme [9]. 
We take the latter approach for 2D under-sampling of 3D sequences as described 
later in this section.   
 
To further examine the applicability of SWT to multiple-coil reconstructions, the 
aforementioned under-sampled data were also reconstructed by the SPIRiT 
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reconstruction method described in [9], where the reconstruction problem is 
formulated as an optimization with calibration and wavelet 𝑙1 penalties, subject to 
consistency with the acquired data: 
 

min
𝑓⋆
‖𝜓𝑓⋆‖𝑙1 +  𝜆‖(𝐺 − 𝐼)ℱ𝑓

⋆‖𝑙2  s.t. ‖𝑈𝐹ℱ𝑓
⋆ − 𝐹𝑢‖𝑙2 <  휀 (8) 

 
Where 𝑓⋆ is now the solution consisting of every and each individual coil. Similarly 
𝐹𝑢 consists of under-sampled data acquisition for all coils. 𝐺 is the SPIRiT calibration 
operator and 𝐼 is the unitary matrix. The difference between the SPIRiT calibration 
operator and that of the traditional GRAPPA [3] is that in SPIRiT the calibration 
operator is a “full” kernel independent of the under-sampling pattern, which is the 
same for all k-space positions. For more details refer to [9]. Reconstruction was 
performed with SWT, DWT, and DWT with random shifts (DWTRS), using the code 
provided by the authors. 
 
Reconstruction quality was quantitatively measured in terms of the normalized root 
mean square error (NRMSE) with respect to the fully-sampled data. The statistical 
significance of the findings was evaluated by paired comparisons of the NRMSE 
values based on paired t-tests under the null hypothesis that the mean NRMSE of 
the DWT reconstruction in each pair is smaller than or equal to that of SWT. Since 
several such t-tests were performed, the comparisons were corrected by the 
Bonferroni correction with a significance level of 𝛼 = 0.05. 
 
Furthermore, as noted previously, it has been shown that reasonable 2D under-
sampling can be achieved using a Poisson disk sampling scheme for 3D acquisitions. 
3D SPGR data were acquired at 3T using a 32-channel head coil (matrix: 
256x256x160, resolution = 1mm isotropic, TE/TR = 3.71ms/8.36ms, flip angle = 
18°, BW = ±19.23 kHz, NEX=1). K-space data were retrospectively under-sampled in 
the phase-encode directions using a Poisson disk under-sampling scheme, and 
reconstructed by SPIRiT with DWT, DWTRS, and SWT. 



Results 

 

Figure 6- Reconstruction of under-sampled SGPR data (under-sampling factor 3) by 𝑙1+ TV 
penalized optimization. The arrows point examples of the artifacts present in the DWT 
reconstruction that are absent in the corresponding SWT reconstruction. 

Figure 6 shows the reconstruction of the under-sampled SPGR data by SWT/DWT 𝑙1 
+ TV penalized optimization. The choice of the regularization parameter (𝛼 in 
equation 6) generally affects the reconstruction performance. In order to avoid the 
possibility of giving SWT any advantage over DWT by a particular choice of 𝛼, a 
value optimized for the DWT reconstruction (suggested by Lustig et al in their code) 
was used for both reconstructions. The dependence of the SWT/DWT 
reconstructions on the regularization parameter is more thoroughly investigated in 
the next experiments. The images clearly illustrate DWT reconstruction artifacts 
(even with an additional TV penalty) that are absent in the SWT reconstruction. 
 
Figure 7 shows the results of the repeated trials for the reconstruction of the under-
sampled 32-channel FSE data by the multiple-coil iterative thresholding algorithm. 
Clearly, the SWT reconstructions resulted in lower mean error values than the 
corresponding DWT reconstructions. The mean and its 95% confidence interval of 
the paired NRMSE differences of the SWT and DWT reconstructions, i.e., NRMSESWT- 
NRMSEDWT, corresponding to the paired t-tests, are shown in Table 3 for both hard 
and soft thresholding. Negative NRMSE difference means with confidence intervals 
that do not include zero indicate that SWT resulted in lower reconstruction errors 
than DWT for both soft and hard thresholding. Furthermore, after the Bonferroni 
correction all the findings were significant.  
 



 

Figure 7- Mean NRMSE and the corresponding error bars of one standard deviation for the 
reconstruction of the under-sampled 32-channel FSE data by the multiple-coil iterative 
thresholding algorithm. 

 
NRMSESWT - NRMSEDWT (x10-3) 

U.F. 2 3 4 5 6 

Soft -3.6(37%) ± 0.16 -3.9(30%)± 0.22 -3.2(22%)± 0.18 -2.7(16%)± 0.17 -2.4(12%)± 0.18 
Hard -1.2(13%)± 0.12 -1.6(12%)± 0.12 -1.6(11%)± 0.24 -1.5(9%)± 0.18 -1.7(9%)± 0.16 

Table 3- Mean and its 95% confidence interval of the paired NRMSE differences (i.e., NRMSE 
of the DWT reconstruction subtracted from that of the corresponding SWT reconstruction) 
for the reconstruction of the 32-channel FSE data by the multiple-coil iterative thresholding 
algorithm with soft and hard thresholding for different under-sampling factors (U.F.). The 
numbers in brackets show the percentage of mean improvement with SWT over DWT. All 
findings in this table are statistically significant after the Bonferroni correction. 

 
 



 

Figure 8- Reconstruction of under-sampled 32-channel FSE data by the multiple-coil 
iterative thresholding algorithm with SWT/DWT soft/hard thresholding. (a) Fully-sampled 
data. (b) Illustration of variable density random under-sampling. Note the fully-sampled 
center portion of k-space amounting to the auto-callibration data (c) Convergence plot of 
the multiple-coil iterative thresholding reconstruction algorithm, in terms of NRMSE vs. 
iteration number for x3 and x5 acceleration. (d) Examples of reconstruction from x3 and x5 
under-sampled data after 50 iterations. Note the visual artifacts in the DWT reconstructions 
that are absent or greatly reduce in the corresponding SWT reconstructions. 



 
Figure 8 shows sample reconstructions by the multiple-coil iterative thresholding 
algorithm with SWT/DWT soft/hard thresholding. As illustrated in this figure, most 
of the artifacts in the DWT iterative soft/hard thresholding reconstructions are 
noticeably reduced in the corresponding SWT reconstructions. 
 
The progress of the iterative reconstruction algorithms is shown in Figure 8(b). Not 
only do the SWT reconstructions result in lower reconstruction errors, the “over-
convergence” effect6 in the DWT reconstructions, which results in an increase in the 
reconstruction error after a number of iterations before convergence, is not 
observed in the SWT reconstructions. This is more thoroughly investigated in Figure 
9. 
 
The dependence of the iterative SWT/DWT thresholding reconstructions on the 
choice of the threshold is illustrated in Figure 9. In the interest of space, only soft 
thresholding reconstructions are reported. Nevertheless, the main conclusions are 
applicable to hard thresholding also. 
 
An initial base threshold was obtained using the Birgé-Massart strategy [26], in 
which the threshold is chosen such that at each decomposition level 𝑗, from 1 to 𝑗𝑚, 
𝑛𝑗  largest decimated wavelet transform coefficients are kept, with 𝑛𝑗 =

𝑀 (𝑗𝑚 + 2 − 𝑗)
𝛼⁄ , where 𝑀 is typically assumed to be equal to the length of the 

coarsest approximation coefficients, and 𝛼 = 3. The convergence of the iterative 
SWT/DWT thresholding algorithms, in terms of the reconstruction NRMSE vs. 
iteration number, was studied for several variations of this base threshold by 
multiplicative factors. 
 
As shown in Figure 9, increasing the threshold generally resulted in increased 
reconstruction error for both the SWT and DWT reconstructions as well as 
increased over-convergence for the DWT reconstruction (dotted lines on the plots). 
On the other hand, a moderate decrease of the threshold did not result in noticeable 
improvement in the reconstruction error, nor did it alleviate the over-convergence 
observed with DWT, while a more aggressive decrease in the threshold resulted in 
increased reconstruction error due to increased over-convergence for both SWT 
and DWT. In general the results suggest that the Birgé -Massart strategy can be used 
to obtain practically optimum thresholds for both SWT and DWT. 
 
Clearly, regardless of the threshold, SWT resulted in lower reconstruction errors 
compared to DWT. Additionally, the SWT reconstruction generally reached 
convergence in far less iterations than the corresponding DWT reconstruction, with 
no noticeable over-convergence. (For instance compare Figure 9(a) with Figure 

                                                        
6 Over-convergence occurs when the optimum for the objective function being computed (in this 
case, the 𝑙1 norm of the DWT coefficients) differs significantly from a desirable reference metric (such 
as the NRMSE between the reconstructed and fully-sampled images) often characterized by an initial 
sharp decrease in the reference metric followed by a more gradual increase. 



9(b,c): while SWT reaches convergence in about 50 iterations, it almost takes 5000 
iterations for the DWT reconstruction to reach convergence.) 
 
It should be noted that all the results in Figure 7, Table 3, and Figure 8 are obtained 
with thresholds obtained based on the Birgé -Massart strategy. Furthermore, in 
order to avoid giving SWT any advantage due to the over-convergence of the DWT 
reconstruction (see the discussion above on over-convergence), and since in 
practice the reconstructions can be terminated after a certain number of iterations, 
all the results in Figure 7, Table 3, and Figure 8(d) were obtained with 50 iterations. 
 

 

Figure 9- Effect of the choice of the threshold on the convergence of the multiple-coil 
iterative SWT/DWT soft thresholding algorithm for the reconstruction of under-sampled 
32-channel FSE data (under-sampling factor 5) with SWT (a) and DWT (b, c). The 
convergence of the algorithms, in terms of the reconstruction NRMSE vs. iteration number, 
is shown for several variations of a base threshold, 𝑇, by multiplicative factors. Since the 



DWT reconstruction requires far more iterations to converge than the SWT reconstruction, 
an extended plot over 10000 iterations is shown in (c) for the DWT reconstruction.  

 
Figure 10 shows the reconstruction performance of SWT/DWTRS/DWT SPIRiT on 
the same under-sampled 32-channel FSE datasets, in terms of the mean and the 
standard deviation of the reconstruction errors for the repeated trials. Clearly SWT 
results in lower mean error values than DWT and DWTRS. The mean and its 95% 
confidence interval of the paired NRMSE differences are shown in Table 4. Similar to 
the previous experiments, negative NRMSE difference means with confidence 
intervals that do not include zero indicate that SWT resulted in lower reconstruction 
errors than DWT and DWTRS with all the findings showing significance after the 
Bonferroni correction. 
 

 

Figure 10- Mean NRMSE and the error bars of one standard deviation for the reconstruction 
of the under-sampled 32-channel FSE data by DWT/DWTRS/SWT SPIRiT. 

 
 
(x10-3) 

U.F. 2 3 4 5 6 

NRMSESWT - NRMSEDWT -0.67(8%) 
± 0.067 

-0.91(8%) 
± 0.082 

-1.2(8%) 
± 0.12 

-1.3(7%) 
± 0.10 

-1.4(7%) 
± 0.090 

NRMSESWT - NRMSEDWTRS -0.54(6%) 
± 0.066 

-0.76(6%) 
± 0.090 

-1.1(7%) 
± 0.13 

-1.1(6%) 
± 0.11 

-1.3(6%) 
± 0.095 

Table 4- Mean and its 95% confidence interval of the paired NRMSE differences (i.e., NRMSE 
of the DWT/DWTRS reconstruction subtracted from that of the corresponding SWT 
reconstruction) for the reconstruction of the 32-channel FSE data by SWT/DWTRS/DWT 
SPIRiT for different under-sampling factors (U.F.). The numbers in brackets show the 
percentage of mean improvement with SWT over the corresponding DWT reconstruction. 
All findings are significant after the Bonferroni correction. 



 

Figure 11- 
Reconstruction of the 
under-sampled 32-
channel FSE data 
(under-sampling 
factor 3 and 5) by 
SWT/DWTRS/DWT 
SPIRiT. Note the 
visual artifacts in the 
DWT/DWTRS 
reconstructions that 
are absent or greatly 
reduced in the 
corresponding SWT 
reconstructions. 
Fully-sampled data 
are shown in Figure 
8(a). 

 

 
Sample reconstructions by SWT/DWTRS/DWT SPIRiT are shown in Figure 11. This 
figure clearly illustrates that most of the DWT (including DWTRS) reconstruction 
artifacts are absent or greatly reduced in the corresponding SWT reconstruction. 
 
The progress of the SPIRiT reconstructions for various regularization parameters (𝜆 
in equation 8) is shown in Figure 12. A base value 𝑇 for the regularization parameter 
was assumed as suggested in the code supplement to [9]. The convergence of the 
algorithm, in terms of the reconstruction NRMSE vs. iteration number, was studied 
for several variations of 𝑇 by multiplicative factors. 
 
The convergence plots generally conform to those of the multiple-coil iterative 
thresholding algorithms in the sense that the SWT reconstructions results in lower 
reconstruction error and less over-convergence. Furthermore, as one may expect, 
DWTRS falls in between DWT and SWT both in terms of the reconstruction error 
and over-convergence. 
 
All the results reported in Figure 10, Table 4, and Figure 11, are obtained with a 
regularization 𝑇 (corresponding to the green plot in Figure 12). Furthermore, in 
order to avoid giving the SWT reconstructions any advantage due to over-
convergence, all the results in these figures and table are obtained with 100 
iterations, i.e., around the minimum of the NRMSE curves for DWT and DWTRS. 
 



 

Figure 12- Effect of the choice of the regularization parameter on the convergence of the 
SPIRiT reconstruction algorithm for the reconstruction of under-sampled 32-channel FSE 
data (under-sampling factor 5) with several variations of the discrete wavelet transform, 
i.e., SWT, DWTRS, and DWT. The convergence of the algorithm, in terms of the 
reconstruction NRMSE vs. iteration number, is shown for several variations of a base 
regularization parameter, 𝑇, by multiplicative factors. 

 
It is interesting to observe that the multiple-coil iterative SWT reconstructions and 
the SWT SPIRiT reconstructions result in similar reconstruction quality both 
visually and in terms of the reconstruction error, while the multiple-coil iterative 
DWT thresholding reconstructions suffer from more artifacts than the 
corresponding DWT SPIRiT reconstructions. This suggests that reasonable 
reconstructions can be achieved with simple [multiple-coil] iterative SWT 
thresholding, which is much less computational demanding than more complex 
algorithms such as SPIRiT. 
 



Furthermore, as noted previously, despite its redundancy, the non-decimated 
wavelet transform can be computed very efficiently- in 𝑂(𝑛 log(𝑛)) time. While it is 
still more computationally demanding compared with the decimated wavelet 
transform or its random-shifts version, which can be computed in 𝑂(𝑛), the visual 
and quantitative improvements are very noticeable. In addition, practical 
implementations show small execution time difference between SWT and DWT. For 
example, the execution time for the multiple-coil iterative thresholding 
reconstructions of Figure 8(d) were 8 and 9 seconds for DWT and SWT respectively, 
on an ordinary 3.40 GHz PC using MATLAB. 
 
Figure 13 shows sample reconstructions of the 3D SPGR data with 2D Poisson disk 
sampling. Clearly, also in this case, the SWT reconstructions result in noticeably less 
visual artifacts than the corresponding DWT reconstruction. The results are 
generally consistent with those of the 2D FSE data described above. 
 

 

Figure 13- Reconstruction of 32-channel 3D SPGR data from x3 and x5 under-sampled data 
by SWT/DWTRS/DWT SPIRiT.  (a) Fully-sampled data. (b) illustration of Possion disk 
under-sampling. Note the fully-sampled center portion of k-space amounting to the auto-
callibration data. (c) examples of reconstructions by SPIRiT with DWT, DWT with random 
shifts (DWTRS), and SWT from x3 and x5 under-sampled data. Note the reduced artifacts 
with SWT reconstructions. For example, compare the visibility of the head of caudate 
(pointed to by arrow a in the fully-sampled image) and the putamen  (pointed to by arrow b 
in the fully-sampled image) in the images. In particular, note that while these structures are 
are barely visible in the DWT and DWTRS reconstructions at x5 acceleration due to heavy 
artifacts, they are more clearly visible in the corresponding SWT reconstruction. 



 

Discussion and conclusion 
The most important conclusion drawn from the results presented in this article is 
that under-sampled MRI reconstructions based on the stationary wavelet transform 
(SWT) exhibit noticeably fewer visual artifacts than the corresponding decimated 
wavelet transform (DWT) reconstructions. 
 
While quantitative quality measures, e.g., the normalized root mean square error 
(NRMSE), are commonly used to measure the reconstruction performance, these 
quantities do not necessarily provide a good measure of the practical quality 
perceived by radiologists and other expert users of these medical images. In fact, it 
was called to authors’ attention by collaborating radiologists and neurosurgeons 
that images with a very high quantitative reconstruction quality may still suffer 
from potentially critical losses that those quantitative measures fail to capture. This 
issue is being more thoroughly investigated in the ongoing work, in which we are 
investigating the relationship between the quantitative quality measures and the 
perceptual quality scores, as given by radiologists and other expert users, for 
different reconstructions and applications. 
 
Nevertheless, the results also indicate that SWT reconstructions result in 
approximately 10-30% improvement in the reconstruction error compared to the 
corresponding DWT reconstructions for the reconstruction of multi-channel data. 
This improvement is statistically significant, and is robust to the particular 
reconstruction algorithm chosen. Additionally, SWT results in faster convergence 
than DWT. Also, the over-convergence effect in the DWT reconstruction, where the 
reconstruction error reaches its minimum before convergence and increases 
thereafter, is not observed with SWT. These concepts were demonstrated with 
different pulse sequences, k-space sampling, and reconstruction approaches. 
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