254 research outputs found

    Multiplex genotyping system for efficient inference of matrilineal genetic ancestry with continental resolution

    Get PDF
    Abstract Background: In recent years, phylogeographic studies have produced detailed knowledge on the worldwide distribution of mitochondrial DNA (mtDNA) variants, linking specific clades of the mtDNA phylogeny with certain geographic areas. However, a multiplex genotyping system for the detection of the mtDNA haplogroups of major continental distribution that would be desirable for efficient DNA-based bio-geographic ancestry testing in various applications is still missing. Results: Three multiplex genotyping assays, based on single-base primer extension technology, were developed targeting a total of 36 coding-region mtDNA variants that together differentiate 43 matrilineal haplo-/paragroups. These include the major diagnostic haplogroups for Africa, Western Eurasia, Eastern Eurasia and Native America. The assays show high sensitivity with respect to the amount of template DNA: successful amplification could still be obtained when using as little as 4 pg of genomic DNA and the technology is suitable for medium-throughput analyses. Conclusions: We introduce an efficient and sensitive multiplex genotyping system for bio-geographic ancestry inference from mtDNA that provides resolution on the continental level. The method can be applied in forensics, to aid tracing unknown suspects, as well as in population studies, genealogy and personal ancestry testing. For more complete inferences of overall bio-geographic ancestry from DNA, the mtDNA system provided here can be combined with multiplex systems for suitable autosomal and, in the case of males, Y-chromosomal ancestrysensitive DNA markers

    Evaluation of the VISAGE Basic Tool for Appearance and Ancestry Prediction Using PowerSeq Chemistry on the MiSeq FGx System

    Get PDF
    The study of DNA to predict externally visible characteristics (EVCs) and the biogeographical ancestry (BGA) from unknown samples is gaining relevance in forensic genetics. Technical developments in Massively Parallel Sequencing (MPS) enable the simultaneous analysis of hundreds of DNA markers, which improves successful Forensic DNA Phenotyping (FDP). The EU-funded VISAGE (VISible Attributes through GEnomics) Consortium has developed various targeted MPS-based lab tools to apply FDP in routine forensic analyses. Here, we present an evaluation of the VISAGE Basic tool for appearance and ancestry prediction based on PowerSeq chemistry (Promega) on a MiSeq FGx System (Illumina). The panel consists of 153 single nucleotide polymorphisms (SNPs) that provide information about EVCs (41 SNPs for eye, hair and skin color from HIrisPlex-S) and continental BGA (115 SNPs; three overlap with the EVCs SNP set). The assay was evaluated for sensitivity, repeatability and genotyping concordance, as well as its performance with casework-type samples. This targeted MPS assay provided complete genotypes at all 153 SNPs down to 125 pg of input DNA and 99.67% correct genotypes at 50 pg. It was robust in terms of repeatability and concordance and provided useful results with casework-type samples. The results suggest that this MPS assay is a useful tool for basic appearance and ancestry prediction in forensic genetics for users interested in applying PowerSeq chemistry and MiSeq for this purpose

    Comprehensive mutation analysis of 17 Y-chromosomal short tandem repeat polymorphisms included in the AmpFlSTR® Yfiler® PCR amplification kit

    Get PDF
    The Y-chromosomal short tandem repeat (Y-STR) polymorphisms included in the AmpFlSTR® Yfiler® polymerase chain reaction amplification kit have become widely used for forensic and evolutionary applications where a reliable knowledge on mutation properties is necessary for correct data interpretation. Therefore, we investigated the 17 Yfiler Y-STRs in 1,730–1,764 DNA-confirmed father–son pairs per locus and found 84 sequence-confirmed mutations among the 29,792 meiotic transfers covered. Of the 84 mutations, 83 (98.8%) were single-repeat changes and one (1.2%) was a double-repeat change (ratio, 1:0.01), as well as 43 (51.2%) were repeat gains and 41 (48.8%) repeat losses (ratio, 1:0.95). Medians from Bayesian estimation of locus-specific mutation rates ranged from 0.0003 for DYS448 to 0.0074 for DYS458, with a median rate across all 17 Y-STRs of 0.0025. The mean age (at the time of son’s birth) of fathers with mutations was with 34.40 (±11.63) years higher than that of fathers without ones at 30.32 (±10.22) years, a difference that is highly statistically significant (p < 0.001). A Poisson-based modeling revealed that the Y-STR mutation rate increased with increasing father’s age on a statistically significant level (α = 0.0294, 2.5% quantile = 0.0001). From combining our data with those previously published, considering all together 135,212 meiotic events and 331 mutations, we conclude for the Yfiler Y-STRs that (1) none had a mutation rate of >1%, 12 had mutation rates of >0.1% and four of <0.1%, (2) single-repeat changes were strongly favored over multiple-repeat ones for all loci but 1 and (3) considerable variation existed among loci in the ratio of repeat gains versus losses. Our finding of three Y-STR mutations in one father–son pair (and two pairs with two mutations each) has consequences for determining the threshold of allelic differences to conclude exclusion constellations in future applications of Y-STRs in paternity testing and pedigree analyses

    An efficient multiplex genotyping approach for detecting the major worldwide human Y-chromosome haplogroups

    Get PDF
    The Y chromosome is paternally inherited and therefore serves as an evolutionary marker of patrilineal descent. Worldwide DNA variation within the non-recombining portion of the Y chromosome can be represented as a monophyletic phylogenetic tree in which the branches (haplogroups) are defined by at least one SNP. Previous human population genetics research has produced a wealth of knowledge about the worldwide distribution of Y-SNP haplogroups. Here, we apply previous and very recent knowledge on the Y-SNP phylogeny and Y-haplogroup distribution by introducing two multiplex genotyping assays that allow for the hierarchical detection of 28 Y-SNPs defining the major worldwide Y haplogroups. PCR amplicons were kept small to make the method sensitive and thereby applicable to DNA of limited amount and/or quality such as in forensic settings. These Y-SNP assays thus form a valuable tool for researchers in the fields of forensic genetics and genetic anthropology to infer a man's patrilineal bio-geographic ancestry from DNA

    Testing the impact of trait prevalence priors in Bayesian-based genetic prediction modeling of human appearance traits

    Get PDF
    The prediction of appearance traits by use of solely genetic information has become an established approach and a number of statistical prediction models have already been developed for this purpose. However, given limited knowledge on appearance genetics, currently available models are incomplete and do not include all causal genetic variants as predictors. Therefore such prediction models may benefit from the inclusion of additional information that acts as a proxy for this unknown genetic background. Use of priors, possibly informed by trait category prevalence values in biogeographic ancestry groups, in a Bayesian framework may thus improve the prediction accuracy of previously predicted externally visible characteristics, but has not been investigated as of yet. In this study, we assessed the impact of using trait prevalence-informed priors on the prediction p

    PHOX2B polyalanine repeat length is associated with sudden infant death syndrome and unclassified sudden infant death in the Dutch population

    Get PDF
    Unclassified sudden infant death (USID) is the sudden and unexpected death of an infant that remains unexplained after thorough case investigation including performance of a complete autopsy and review of the circumstances of death and the clinical history. When the infant is below 1 year of age and with onset of the fatal episode apparently occurring during sleep, this is referred to as sudden infant death syndrome (SIDS). USID and SIDS remain poorly understood despite the identification of several environmental and some genetic risk factors. In this study, we investigated genetic risk factors involved in the autonomous nervous system in 195 Dutch USID/SIDS cases and 846 Dutch, age-matched healthy controls. Twenty-five DNA variants from 11 genes previously implicated in the serotonin household or in the congenital central hypoventilation syndrome, of which some have been associated with SIDS before, were tested. Of all DNA variants considered, only the length variation of the polyalanine repeat in exon 3 of the PHOX2B gene was found to be statistically significantly associated with USID/SIDS in the Dutch population after multiple test correction. Interestingly, our data suggest that contraction of the PHOX2B exon 3 polyalanine repeat that we found in six of 160 SIDS and USID cases and in six of 814 controls serves as a probable genetic risk factor for USID/SIDS at least in the Dutch population. Future studies are needed to confirm this finding and to understand the functional effect of the polyalanine repeat length variation, in particular contraction, in exon 3 of the PHOX2B gene

    Lack of gene-language correlation due to reciprocal female but directional male admixture in Austronesians and non-Austronesians of East Timor

    Get PDF
    Nusa Tenggara, including East Timor, located at the crossroad between Island Southeast Asia, Near Oceania, and Australia, are characterized by a complex cultural structure harbouring speakers from two different major linguistic groups of different geographic origins (Austronesian (AN) and non-Austronesian (NAN)). This provides suitable possibilities to study gene-language relationship; however, previous studies from other parts of Nusa Tenggara reported conflicting evidence about gene-language correlation in this region. Aiming to investigate gene-language relationships including sex-mediated aspects in East Timor, we analysed the paternally inherited non-recombining part of the Y chromosome (NRY) and the maternally inherited mitochondrial (mt) DNA in a representative collection of AN-and NAN-speaking groups. Y-SNP (single-nucleotide polymorphism) data were newly generated for 273 samples and combined with previously established Y-STR (short tandem repeat) data of the same samples, and with previously established mtDNA data of 290 different samples with, however, very similar representation of geographic and linguistic coverage of the country. We found NRY and mtDNA haplogroups of previously described putative East/Southeast Asian (E/SEA) and Near Oceanian (NO) origins in both AN and NAN speakers of East Timor, albeit in different proportions, suggesting reciprocal genetic admixture between both linguistic groups for females, but directional admixture for males. Our data underline the dual genetic origin of East Timorese in E/SEA and NO, and highlight that substantial genetic admixtur
    corecore