3,304 research outputs found
Developing lspr design guidelines
Applications of localized surface plasmon resonance (LSPR) such as surface enhanced Raman scattering (SERS) devices, biosensors, and nano-optics are growing. Investigating and understanding of the parameters that affect the LSPR spectrum is important for the design and fabrication of LSPR devices. This paper studies different parameters, including geometrical structures and light attributes, which affect the LSPR spectrum properties such as plasmon wavelength and enhancement factor. The paper also proposes a number of rules that should be considered in the design and fabrication of LSPR device
String Theory in the Penrose Limit of AdS_2 x S^2
The string theory in the Penrose limit of AdS_2 x S^2 is investigated. The
specific Penrose limit is the background known as the Nappi-Witten spacetime,
which is a plane-wave background with an axion field. The string theory on it
is given as the Wess-Zumino-Novikov-Witten (WZNW) model on non-semi-simple
group H_4. It is found that, in the past literature, an important type of
irreducible representations of the corresponding algebra, h_4, were missed. We
present this "new" representations, which have the type of continuous series
representations. All the three types of representations of the previous
literature can be obtained from the "new" representations by setting the
momenta in the theory to special values. Then we realized the affine currents
of the WZNW model in terms of four bosonic free fields and constructed the
spectrum of the theory by acting the negative frequency modes of free fields on
the ground level states in the h_4 continuous series representation. The
spectrum is shown to be free of ghosts, after the Virasoro constraints are
satisfied. In particular we argued that there is no need for constraining one
of the longitudinal momenta to have unitarity. The tachyon vertex operator,
that correspond to a particular state in the ground level of the string
spectrum, is constructed. The operator products of the vertex operator with the
currents and the energy-momentum tensor are shown to have the correct forms,
with the correct conformal weight of the vertex operator.Comment: 30 pages, Latex, no figure
Optical microsensor for counting food substance particles in lab-on-a-chips
Integrated optical detection is considered to be an important operation in lab-on-a-chips. This paper presents an optical fiber-based micro-sensor that is capable of detecting food substance particles in a lab-on-a-chip. The system consists of a microcontroller and associated circuitry, a laser emitter, a laser receiver, fiber optic cables, a microfluidics chip, and the food substance samples to be tested. When the particles flow through the microfluidic channel in the chip, the receiver’s output voltage varies due to the particles blocking the passage of the laser ray. The changes in the collected signals are analyzed to count the number of particles. Experiments are conducted on several food substance samples including talcum powder, ground ginger, and soy sauce. The experimental results are presented and discussed
Symbol calculus and zeta--function regularized determinants
In this work, we use semigroup integral to evaluate zeta-function regularized
determinants. This is especially powerful for non--positive operators such as
the Dirac operator. In order to understand fully the quantum effective action
one should know not only the potential term but also the leading kinetic term.
In this purpose we use the Weyl type of symbol calculus to evaluate the
determinant as a derivative expansion. The technique is applied both to a
spin--0 bosonic operator and to the Dirac operator coupled to a scalar field.Comment: Added references, some typos corrected, published versio
Effects of topology optimization in multimaterial 3D bioprinting of soft actuators
Recently, there has been a proliferation of soft robots and actuators that exhibit improved capabilities and adaptability through three-dimensional (3D) bioprinting. Flexibility and shape recovery attributes of stimuli-responsive polymers as the main components in the production of these dynamic structures enable soft manipulations in fragile environments, with potential applications in biomedical and food sectors. Topology optimization (TO), when used in conjunction with 3D bioprinting with optimal design features, offers new capabilities for efficient performance in compliant mechanisms. In this paper, multimaterial TO analysis is used to improve and control the bending performance of a bioprinted soft actuator with electrolytic stimulation. The multimaterial actuator performance is evaluated by the amplitude and rate of bending motion and compared with the single material printed actuator. The results demonstrated the efficacy of multimaterial 3D bioprinting optimization for the rate of actuation and bending
Control-based 4D printing: adaptive 4D-printed systems
Building on the recent progress of four-dimensional (4D) printing to produce dynamic structures, this study aimed to bring this technology to the next level by introducing control-based 4D printing to develop adaptive 4D-printed systems with highly versatile multi-disciplinary applications, including medicine, in the form of assisted soft robots, smart textiles as wearable electronics and other industries such as agriculture and microfluidics. This study introduced and analysed adaptive 4D-printed systems with an advanced manufacturing approach for developing stimuli-responsive constructs that organically adapted to environmental dynamic situations and uncertainties as nature does. The adaptive 4D-printed systems incorporated synergic integration of three-dimensional (3D)-printed sensors into 4D-printing and control units, which could be assembled and programmed to transform their shapes based on the assigned tasks and environmental stimuli. This paper demonstrates the adaptivity of these systems via a combination of proprioceptive sensory feedback, modeling and controllers, as well as the challenges and future opportunities they present
Relativistic Lee Model on Riemannian Manifolds
We study the relativistic Lee model on static Riemannian manifolds. The model
is constructed nonperturbatively through its resolvent, which is based on the
so-called principal operator and the heat kernel techniques. It is shown that
making the principal operator well-defined dictates how to renormalize the
parameters of the model. The renormalization of the parameters are the same in
the light front coordinates as in the instant form. Moreover, the
renormalization of the model on Riemannian manifolds agrees with the flat case.
The asymptotic behavior of the renormalized principal operator in the large
number of bosons limit implies that the ground state energy is positive. In 2+1
dimensions, the model requires only a mass renormalization. We obtain rigorous
bounds on the ground state energy for the n-particle sector of 2+1 dimensional
model.Comment: 23 pages, added a new section, corrected typos and slightly different
titl
Characterization of conductive polyprrole coated wool yarns
Wool yarns were coated with conducting polypyrrole by chemical synthesis methods. Polymerization of pyrrole was carried out in the presence of wool yarn at various concentrations of the monomer and dopant anion. The changes in tensile, moisture absorption, and electrical properties of the yarn upon coating with conductive polypyrrole are presented. Coating the wool yarns with conductive polypyrrole resulted in higher tenacity, higher breaking strain, and lower initial modulus. The changes in tensile properties are attributed to the changes in surface morphology due to the coating and reinforcing effect of conductive polypyrrole. The thickness of the coating increased with the concentration of p-toluene sulfonic acid, which in turn caused a reduction in the moisture regain of the wool yarn. Reducing the synthesis temperature and replacing p-toluenesulfonic acid by anthraquinone sulfonic acid resulted in a large reduction in the resistance of the yarn. <br /
Biological Cell Discrimination Based on Their High Frequency Dielectropheretic Signatures at UHF Frequencies
2017 International Microwave Symposium paper entitled "Biological Cell Discrimination Based on Their High Frequency Dielectropheretic Signatures at UHF Frequencies". Honolulu June 4-9th 2017. Amended version: see additional notes.This version amends the wrong naming in the previous record: the conference is the IEEE IMS 2017, not 2018
Intraoperative arthroscopic classification tool for posterolateral elbow instability
Background: Introducing and implementing an arthroscopic classification tool for posterolateral elbow instability. Methods: Thirty arthroscopies were performed on 30 patients, and all recordings were collected, blinded, and labeled. Three orthopedic surgeons reviewed and scored all 30 recordings three times with a period of at least seven days in between to analyze the intraobserver and interobserver reliability. The classification consisted of five different grades. Results: Indications for elbow arthroscopy included impingement (n = 7), osteochondritis dissecans (n = 5), pain (n = 7), osteoarthritis (n = 6), and other (n = 5). The kappa value for intrarater reliability was 0.71, indicating good reliability, while the kappa value for inter-rater reliability was 0.38 indicating fair reliability. Conclusion: This new classification is a tool for an arthroscopic assessment of PLRI and can be used as a standardized grading system for further research and communication between orthopedic surgeons. We demonstrated good intrarater reliability (k = 0.71) with fair inter-rater reliability (k = 0.38). However, further research is necessary to study the clinical significance.</p
- …