30 research outputs found
A plasmid-based system for expressing small interfering RNA libraries in mammalian cells
BACKGROUND: RNA interference (RNAi) is an evolutionarily conserved process that functions to inhibit gene expression. The use of RNAi in mammals as a tool to study gene function has rapidly developed in the last couple of years since the discovery that the function-inhibiting units of RNAi are short 21â25 nt double-stranded RNAs (siRNAs) derived from their longer template. The use of siRNAs allows for gene-specific knock-down without induction of the non-specific interferon response in mammalian cells. Multiple systems have been developed to introduce siRNAs into mammals. One of the most appealing of these techniques is the use of vectors containing polymerase III promoters to drive expression of hairpin siRNAs. However, there are multiple limitations to using hairpin siRNA vectors including the observation that some are unstable in bacteria and are difficult to sequence. RESULTS: To circumvent the limitation of hairpin siRNA vectors we have developed a convergent opposing siRNA expression system called pHippy. We have generated pHippy vectors or expression cassettes that knock down the expression of both reporter and endogenous genes. As a proof of principle that pHippy can be used to generate random siRNA libraries, we generated a small siRNA library against PGL3 luciferase and demonstrated that we could recover functional siRNAs that knock down PGL3 luciferase. CONCLUSIONS: siRNA is a powerful tool to study gene function. We have developed a new vector with opposing convergent promoters for the expression of siRNAs, which can be used to knock down endogenous genes in a high throughput manner or to perform functional screening with random or cDNA-derived siRNA libraries
Genome-Scale CRISPR Screens Identify Human Pluripotency-Specific Genes
Human pluripotent stem cells (hPSCs) generate a variety of disease-relevant cells that can be used to improve the translation of preclinical research. Despite the potential of hPSCs, their use for genetic screening has been limited by technical challenges. We developed a scalable and renewable Cas9 and sgRNA-hPSC library in which loss-of-function mutations can be induced at will. Our inducible mutant hPSC library can be used for multiple genome-wide CRISPR screens in a variety of hPSC-induced cell types. As proof of concept, we performed three screens for regulators of properties fundamental to hPSCs: their ability to self-renew and/or survive (fitness), their inability to survive as single-cell clones, and their capacity to differentiate. We identified the majority of known genes and pathways involved in these processes, as well as a plethora of genes with unidentified roles. This resource will increase the understanding of human development and genetics. This approach will be a powerful tool to identify disease-modifying genes and pathways
Zebrafish Prickle, a Modulator of Noncanonical Wnt/Fz Signaling, Regulates Gastrulation Movements
AbstractIn addition to the canonical Wnt/ÎČ-catenin signaling pathway, at least two noncanonical Wnt/Fz pathways have been described: the planar cell polarity (PCP) pathway in Drosophila[1] and the Wnt/calcium pathway in vertebrate embryos [2]. Recent work suggests that a vertebrate pathway homologous to the PCP pathway acts to regulate the convergent extension movements of gastrulation [3â7]. To further test this hypothesis, we have identified two zebrafish homologs of the Drosophila PCP gene prickle (pk) [8], both of which show discrete and dynamic expression patterns during gastrulation. Both gain and loss of pk1 function cause defects in convergent extension. Pk1 localizes to both the cytoplasm and the cell membrane, and its normal localization is partially dependent on its C-terminal prenylation motif. At the cell membrane, Pk1 is frequently localized asymmetrically around the cell and can colocalize with the signaling molecule Dishevelled (Dsh). In overexpression assays, Pk1 is able to activate AP-1-mediated transcription and inhibit activation of Wnt/ÎČ-catenin signaling. Like noncanonical Wnts [9, 10], overexpression of Pk1 increases the frequency of calcium transients in zebrafish blastulae. Our results support the idea that a vertebrate PCP pathway regulates gastrulation movements and suggest that there is overlap between the PCP and Wnt/calcium pathways
Bili Inhibits Wnt/ÎČ-Catenin Signaling by Regulating the Recruitment of Axin to LRP6
BACKGROUND: Insights into how the Frizzled/LRP6 receptor complex receives, transduces and terminates Wnt signals will enhance our understanding of the control of the Wnt/ss-catenin pathway. METHODOLOGY/PRINCIPAL FINDINGS: In pursuit of such insights, we performed a genome-wide RNAi screen in Drosophila cells expressing an activated form of LRP6 and a beta-catenin-responsive reporter. This screen resulted in the identification of Bili, a Band4.1-domain containing protein, as a negative regulator of Wnt/beta-catenin signaling. We found that the expression of Bili in Drosophila embryos and larval imaginal discs significantly overlaps with the expression of Wingless (Wg), the Drosophila Wnt ortholog, which is consistent with a potential function for Bili in the Wg pathway. We then tested the functions of Bili in both invertebrate and vertebrate animal model systems. Loss-of-function studies in Drosophila and zebrafish embryos, as well as human cultured cells, demonstrate that Bili is an evolutionarily conserved antagonist of Wnt/beta-catenin signaling. Mechanistically, we found that Bili exerts its antagonistic effects by inhibiting the recruitment of AXIN to LRP6 required during pathway activation. CONCLUSIONS: These studies identify Bili as an evolutionarily conserved negative regulator of the Wnt/beta-catenin pathway
Genome engineering of isogenic human ES cells to model autism disorders.
Isogenic pluripotent stem cells are critical tools for studying human neurological diseases by allowing one to study the effects of a mutation in a fixed genetic background. Of particular interest are the spectrum of autism disorders, some of which are monogenic such as Timothy syndrome (TS); others are multigenic such as the microdeletion and microduplication syndromes of the 16p11.2 chromosomal locus. Here, we report engineered human embryonic stem cell (hESC) lines for modeling these two disorders using locus-specific endonucleases to increase the efficiency of homology-directed repair (HDR). We developed a system to: (1) computationally identify unique transcription activator-like effector nuclease (TALEN) binding sites in the genome using a new software program, TALENSeek, (2) assemble the TALEN genes by combining golden gate cloning with modified constructs from the FLASH protocol, and (3) test the TALEN pairs in an amplification-based HDR assay that is more sensitive than the typical non-homologous end joining assay. We applied these methods to identify, construct, and test TALENs that were used with HDR donors in hESCs to generate an isogenic TS cell line in a scarless manner and to model the 16p11.2 copy number disorder without modifying genomic loci with high sequence similarity
Biallelic loss-of-function variants in <i>CACHD1 </i>cause a novel neurodevelopmental syndrome with facial dysmorphism and multisystem congenital abnormalities
Purpose We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. Methods We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. Results Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. Conclusion Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities
Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders
Summary As a group, we met to discuss the current challenges for creating meaningful patient-specific in vitro models to study brain disorders. Although the convergence of findings between laboratories and patient cohorts provided us confidence and optimism that hiPSC-based platforms will inform future drug discovery efforts, a number of critical technical challenges remain. This opinion piece outlines our collective views on the current state of hiPSC-based disease modeling and discusses what we see to be the critical objectives that must be addressed collectively as a field
LMP-1's Transmembrane Domains Encode Multiple Functions Required for LMP-1's Efficient Signaling
The latent membrane protein-1 (LMP-1) of Epstein-Barr virus (EBV) contributes to the proliferation of infected B lymphocytes by signaling through its binding to cellular signaling molecules. It apparently mimics members of the tumor necrosis factor receptor family, in particular, CD40, by binding a similar set of cellular molecules as does CD40. LMP-1 differs dramatically in its structure from CD40. LMP-1 has six membrane-spanning domains as opposed to CD40's one. LMP-1 also differs from CD40 in its apparent independence of a ligand for its signaling. We have examined the role of LMP-1's membrane-spanning domains in its signaling. Their substitution with six membrane-spanning domains from the LMP-2A protein of EBV yields a derivative which neither coimmunoprecipitates with LMP-1 nor signals to increase the activity of NF-ÎșB as does wild-type LMP-1. These observations indicate that LMP-1 has specific sequences in its membrane-spanning domains required for these activities. LMP-1's first and sixth membrane-spanning domains have multiple leucine residues potentially similar to leucine-heptad motifs that can mediate protein-protein interactions in membranes (Gurezka et al., J. Biol. Chem. 274:9265-9270, 1999). Substitution of seven leucines in LMP-1's sixth membrane-spanning domain has no effect on its function, whereas similar substitutions in its first membrane-spanning domain yielded a derivative which aggregates as does wild-type LMP-1 but has only 3% of wild-type's ability to signal through NF-ÎșB. Importantly, this derivative complements a mutant of LMP-1 with wild-type membrane-spanning domains but no carboxy-terminal signaling domain. These findings together indicate that the membrane-spanning domains of LMP-1 contribute multiple functions to its signaling