16 research outputs found

    HER1-Targeted 86Y-Panitumumab Possesses Superior Targeting Characteristics than 86Y-Cetuximab for PET Imaging of Human Malignant Mesothelioma Tumors Xenografts

    Get PDF
    Malignant mesothelioma (MM), a rare form of cancer is often associated with previous exposure to fibrous minerals, such as asbestos. Asbestos exposure increases HER1-activity and expression in pre-clinical models. Additionally, HER1 over-expression is observed in the majority of MM cases. In this study, the utility of HER1-targeted chimeric IgG(1), cetuximab, and a human IgG(2), panitumumab, radiolabeled with (86)Y, were evaluated for PET imaging to detect MM non-invasively in vivo, and to select an antibody candidate for radioimmunotherapy (RIT).Radioimmunoconjugates (RICs) of cetuximab and panitumumab were prepared by conjugation with CHX-A''-DTPA followed by radiolabeling with (86)Y. The HER1 expression of NCI-H226, NCI-H2052, NCI-H2452 and MSTO-211H human mesothelioma cells was characterized by flow cytometry. In vivo biodistribution, pharmacokinetic analysis, and PET imaging were performed in tumor bearing athymic mice.In vivo studies demonstrated high HER1 tumor uptake of both RICs. Significant reduction in tumor uptake was observed in mice co-injected with excess mAb (0.1 mg), demonstrating that uptake in the tumor was receptor specific. Significant differences were observed in the in vivo characteristics of the RICs. The blood clearance T(½)α of (86)Y-cetuximab (0.9-1.1 h) was faster than (86)Y-panitumumab (2.6-3.1 h). Also, the tumor area under the curve (AUC) to liver AUC ratios of (86)Y-panitumumab were 1.5 to 2.5 times greater than (86)Y-cetuximab as observed by the differences in PET tumor to background ratios, which could be critical when imaging orthotopic tumors and concerns regarding radiation doses to normal organs such as the liver.This study demonstrates the more favorable HER1-targeting characteristics of (86)Y-panitumumab than (86)Y-cetuximab for non-invasive assessment of the HER1 status of MM by PET imaging. Due to lower liver uptake, panitumumab based immunoconjugates may fare better in therapy than corresponding cetuximab based immunoconjugates

    Improved efficacy of alpha-particle-targeted radiation therapy: dual targeting of human epidermal growth factor receptor-2 and tumor-associated glycoprotein 72. Cancer 116(4 Suppl):1059-1066

    No full text
    BACKGROUND: Human epidermal growth factor receptor–2 (HER-2) and tumor-associated glycoprotein 72 (TAG-72) have proven to be excellent molecular targets for cancer imaging and therapy. Trastuzumab, which binds to HER-2, is effective in the treatment of disseminated intraperitoneal disease when labeled with 213Bi or 212Pb. 213Bi-humanized CC49 monoclonal antibody (HuCC49ΔCH2), which binds to TAG-72, inhibits the growth of subcutaneous xenografts. A next logical step to improve therapeutic benefit would be to target tumors with both molecules simultaneously. METHODS: Athymic mice bearing intraperitoneal human colon carcinoma xenografts were treated with a combination of trastuzumab and HuCC49ΔCH2 labeled with 213Bi administered through an intraperitoneal route. The sequence of administration also was examined. RESULTS: Before combining the 2 monoclonal antibodies, the effective doses of 213Bi-CC49ΔCH2 and 213Bi-trastuzumab for the treatment of peritoneal disease were determined to be 500 μCi for each labeled antibody. Treatment with 213Bi-HuCC49ΔCH2 resulted in a median survival of 45 days and was comparable to the median survival achieved with 213Bi-trastuzumab. Each combination provided greater therapeutic efficacy than either of the agents given alone. However, the greatest therapeutic benefit was achieved when 213Bi-HuCC49ΔCH2 and 213Bi-trastuzumab were coinjected, and a median survival of 147 days was obtained. CONCLUSIONS: Dual targeting of 2 distinct molecules in tumors such as TAG-72 and HER-2 with α-particle radiation resulted in an enhanced, additive, therapeutic benefit. The authors also observed that this radioimmunotherapeutic strategy was well tolerated

    Effective treatment of a murine model of adult T-cell leukemia using 211At-7G7/B6 and its combination with unmodified anti-Tac (daclizumab) directed toward CD25

    No full text
    Adult T-cell leukemia (ATL) consists of an overabundance of T cells, which express CD25. Therapeutic efficacy of astatine-211 (211At)–labeled murine monoclonal antibody 7G7/B6 alone and in combination with daclizumab was evaluated in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice given injections of MET-1 human T-cell leukemia cells. Daclizumab and 7G7/B6 are directed toward different epitopes of CD25. Either a single dose of 12 μCi (0.444 MBq) 211At-7G7/B6 per mouse given intravenously or receptor-saturating doses of daclizumab given at 100 μg weekly for 4 weeks intravenously inhibited tumor growth as monitored by serum levels of human β-2 microglobulin (β2μ) and by prolonged survival of leukemia-bearing mice compared with the control groups (P < .001). The combination of 2 agents enhanced the antitumor effect when compared with groups treated with 12 μCi (0.444 MBq) of 211At-7G7/B6 (P < .05) or daclizumab alone (P < .05). The median survival duration of the PBS group was 62.6 days and 61.5 days in the radiolabeled nonspecific antibody 211At-11F11–treated group. In contrast, 91% of mice in the combination group survived through day 94. These results that demonstrate a significantly improved therapeutic efficacy by combining 211At-7G7/B6 with daclizumab support a clinical trial of this regimen in patients with ATL
    corecore