89 research outputs found

    Recent Damaging Earthquakes in Japan, 2003-2008

    Get PDF
    During the last six years, from 2003-2008, Japan has been struck by three significant and damaging earthquakes: The most recent M6.6 Niigata Chuetsu Oki earthquake of July 16, 2007 off the coast of Kashiwazaki City, Japan; The M6.6 Niigata Chuetsu earthquake of October 23, 2004, located in Niigata Prefecture in the central Uonuma Hills; and the M8.0 Tokachi Oki Earthquake of September 26, 2003 effecting southeastern Hokkaido Prefecture. These earthquakes stand out among many in a very active period of seismicity in Japan. Within the upper 100 km of the crust during this period, Japan experienced 472 earthquakes of magnitude 6, or greater. Both Niigata events affected the south-central region of Tohoku Japan, and the Tokachi-Oki earthquake affected a broad region of the continental shelf and slope southeast of the Island of Hokkaido. This report is synthesized from the work of scores of Japanese and US researchers who led and participated in post-earthquake reconnaissance of these earthquakes: their noteworthy and valuable contributions are listed in an extended acknowledgements section at the end of the paper. During the Niigata Chuetsu Oki event of 2007, damage to the Kashiwazaki-Kariwa nuclear power plant, structures, infrastructure, and ground were primarily the product of two factors: (1) high intensity motions from this moderate-sized shallow event, and (2) soft, poor performing, or liquefiable soils in the coastal region of southwestern Niigata Prefecture. Structural and geotechnical damage along the slopes of dunes was ubiquitous in the Kashiwazaki-Kariwa region. The 2004 Niigata Chuetsu Earthquake was the most significant to affect Japan since the 1995 Kobe earthquake. Forty people were killed, almost 3,000 were injured, and many hundreds of landslides destroyed entire upland villages. Landslides were of all types; some dammed streams, temporarily creating lakes threatening to overtop their new embankments and cause flash floods and mudslides. The numerous landslides resulted, in part, from heavy rain associated with Typhoon Tokage. The earthquake forced more than 100,000 people into temporary shelters, and as many as 10,000 displaced from their upland homes for several years. Total damages was estimated by Japanese authorities at US$40 billion, making this the second most costly disaster in history, after the 1995 Kobe earth-quake. The 2003 Tokachi-Oki earthquake was the third event of magnitude 8.0+ to strike the southeastern portion of Hokkaido in the last 50 years. The event produced tsunami run-ups along the shoreline of southern Hokkaido that reached maximum heights of 4 meters. Accelerations recorded by seismic networks of Hokkaido indicated a high intensity motion region from Hiroo area to Kushiro City, with a PGA values in the range of 0.35 to 0.6g. Despite high acceleration levels, the observed ground failure, liquefaction, structural, port, and lifeline damages were remarkably light

    General Report - Session 4

    Get PDF
    This General Report presents a summary of the 22 papers accepted for the Session 4 focused on Case Histories on Failure and Remediation of Geotechnical Earthquake Engineering, including landslides and Lessons from Recent Earthquakes, and Case Histories on Engineering Vibrations, Vibration Control for Underground and Surface Constructions, with Specific Emphasis on the Urban Environment; Predictions, Monitoring and Solutions; Blasting for Tunnels in Soft Ground and Rock, Discontinuous Rocks and their Application to Water Resources Projects, and Remediation. The papers originate from twelve countries and cover significant topics and projects in the area of geotechnical earthquake engineering, and engineering vibration. These include liquefaction, liquefaction mitigation, lessons from recent earthquakes, landslides, DEM simulation, soil dynamic properties, seismic settlements, seismic hazard and ground motions, seismic waves, site amplification, foundation piles, MSE walls, vibrations and base isolation. Table 1 below presents a list of the accepted papers ordered by topic. The summaries below will provide readers with a general overview of the focus of the papers and is intended to direct the readers to areas of interest. The Session 4 organizers greatly appreciate the efforts of the authors and commend the quality of the accepted papers

    Google Earth Mapping of Damage from the Niigata-Ken-Chuetsu M6.6 Earthquake of 16 July 2007

    Get PDF
    We describe the use of Google Earth during and after a large damaging earthquake that struck the central Japan coast on 16 July 2007 to collect and organize damage information and guide the reconnaissance activities. This software enabled greater real-time collaboration among scientists and engineers. After the field investigation, the Google Earth map is used as a final reporting product that was directly linked to the more traditional research report document. Finally, we analyze the use of the software within the context of a post-disaster reconnaissance investigation, and link it to student use of Google Earth in field situations

    Influence of near-surface stratigraphy on coastal landslides at Sleeping Bear Dunes National Lakeshore, Lake Michigan, USA

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Coastal Research 20 (2004): 510-522, doi:10.2112/1551-5036(2004)020[0510:IONSOC]2.0.CO;2.Lake-level change and landslides are primary controls on the development of coastal environments along the coast of northeastern Lake Michigan. The late Quaternary geology of Sleeping Bear Dunes National Lakeshore was examined with high-resolution seismic reflection profiles, ground-penetrating radar (GPR), and boreholes. Based on sequence-stratigraphic principles, this study recognizes ten stratigraphic units and three major unconformities that were formed by late Pleistocene glaciation and postglacial lake-level changes. Locally high sediment supply, and reworking by two regressions and a transgression have produced a complex stratigraphy that is prone to episodic failure. In 1995, a large landslide deposited approximately 1 million m3 of sediment on the lake floor. The highly deformed landslide deposits, up to 18 m thick, extend 3–4 km offshore and unconformably overlie well-stratified glacial and lacustrine sediment. The landslide-prone bluff is underlain by channel-fill deposits that are oriented nearly perpendicular to the shoreline. The paleochannels are at least 10 m deep and 400 m wide and probably represent stream incision during a lake-level lowstand about 10.3 ka B.P. The channels filled with sediment during the subsequent transgression and lake-level highstand, which climaxed about 4.5 ka B.P. As lake level fell from the highstand, the formation of beach ridges and sand dunes sealed off the channel and isolated a small inland lake (Glen Lake), which lies 5 m above the level of Lake Michigan and may be a source of piped groundwater. Our hypothesis is that the paleochannels act as conduits for pore water flow, and thereby locally reduce soil strength and promote slope failure.Generous support for this project was provided by Max Holden and Steve Yancho of Sleeping Bear Dunes National Lakeshore

    Volcano collapse promoted by progressive strength reduction: new data from Mount St. Helens

    Get PDF
    Rock shear strength plays a fundamental role in volcano flank collapse, yet pertinent data from modern collapse surfaces are rare. Using samples collected from the inferred failure surface of the massive 1980 collapse of Mount St. Helens (MSH), we determined rock shear strength via laboratory tests designed to mimic conditions in the pre-collapse edifice. We observed that the 1980 failure shear surfaces formed primarily in pervasively shattered older dome rocks; failure was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. Our test results show that rock shear strength under large confining stresses is reduced ∼20% as a result of large quasi-static shear strain, as preceded the 1980 collapse of MSH. Using quasi-3D slope-stability modeling, we demonstrate that this mechanical weakening could have provoked edifice collapse, even in the absence of transiently elevated pore-fluid pressures or earthquake ground shaking. Progressive strength reduction could promote collapses at other volcanic edifices

    Geotechnical Observations of the November 3, 2002 M7.9 Denali Fault Earthquake

    Get PDF
    The M 7.9 earthquake of November 3, 2002 event ruptured more than 340 kilometers on three fault, causing widespread liquefaction in the fluvial deposits of steep alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. The event occurred in a remote and largely undeveloped portion of the rugged Alaskan central range, with few seismometer recordings. The areas affected by liquefaction are largely confined to native Holocene river deposits, areas bounded by stiffer ground moraine, Pleistocene uplands, and bedrock. Liquefaction affected areas of alluvial river valleys draining mountainous and glacier-proximal rivers. The most noteworthy observations are that liquefaction damage was focused towards the eastern end of the rupture area. In the western portion of the rupture zone, localized liquefaction developed in recent deposits of the Susitna and Delta rivers in the immediate vicinity of the surface rupture of the fault. More abundant and severe liquefaction occurred on the eastern Robertson, Slana, Tok, Chisana and, especially, Nabesna Rivers. In the Tanana lowland, liquefaction features were sparse on the western bars of the Tanana River in the vicinity of Fairbanks to west of Delta, but became pervasive throughout the eastern region from Delta to Northway. Though liquefaction observations were abundant, there was a dearth of instrumental recordings useful to relate damage effects to measured intensity. To characterize soil properties and stiffness of liquefaction evaluation sites, we used a portable spectral analysis of surface waves (SASW) apparatus to profile the shear wave velocity of the ground. On the Nabesna and Delta rivers that cross the fault, we only observe liquefaction features in soil deposits where normalized shear wave velocities fall below 230 m/s. Severity of sand boils, fissuring and lateral displacement of liquefied ground dramatically increase in soils of lower shear wave velocity, especially below 170 m/s. Some of the most pronounced ground failures are far from the fault zone (60-100 km) in extremely loose, low velocity (~120 m/s) fine sands of the bars of the Tanana River. Strong motion instrumentation was sparse within 150 kilometers of the fault rupture and the seismometers of Alyeska pump stations PS9 (PGA=0.09), PS10 (PGA=0.36g), and PS11 (PGA=0.09) serve as the principal strong motion recordings. Insufficient strong motion instrumentation is available to identify areas of amplified ground motio

    Standard Penetration Test-Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential

    Get PDF
    This paper presents new correlations for assessment of the likelihood of initiation (or “triggering”) of soil liquefaction. These new correlations eliminate several sources of bias intrinsic to previous, similar correlations, and provide greatly reduced overall uncertainty and variance. Key elements in the development of these new correlations are (1) accumulation of a significantly expanded database of field performance case histories; (2) use of improved knowledge and understanding of factors affecting interpretation of standard penetration test data; (3) incorporation of improved understanding of factors affecting site-specific earthquake ground motions (including directivity effects, site-specific response, etc.); (4) use of improved methods for assessment of in situ cyclic shear stress ratio; (5) screening of field data case histories on a quality/uncertainty basis; and (6) use of high-order probabilistic tools (Bayesian updating). The resulting relationships not only provide greatly reduced uncertainty, they also help to resolve a number of corollary issues that have long been difficult and controversial including: (1) magnitude-correlated duration weighting factors, (2) adjustments for fines content, and (3) corrections for overburden stress
    corecore