15 research outputs found

    Enhanced levels of Hsulf-1 interfere with heparin-binding growth factor signaling in pancreatic cancer

    Get PDF
    Hsulf-1 is a newly identified enzyme, which has the ability to decrease the growth of hepatocellular, ovarian, and head and neck squamous cell carcinoma cells by interfering with heparin-binding growth factor signaling. Since pancreatic cancers over-express a number of heparin-binding growth factors and their receptors, the expression and function of this enzyme in pancreatic cancer was analyzed. RESULTS: Pancreatic cancer samples expressed significantly (22.5-fold) increased Hsulf-1 mRNA levels compared to normal controls, and Hsulf-1 mRNA was localized in the cancer cells themselves as well as in peritumoral fibroblasts. 4 out of 8 examined pancreatic cancer cell lines expressed Hsulf-1, whereas its expression was below the level of detection in the other cell lines. Stable transfection of the Hsulf-1 negative Panc-1 pancreatic cancer cell line with a full length Hsulf-1 expression vector resulted in increased sulfatase activity and decreased cell-surface heparan-sulfate proteoglycan (HSPG) sulfation. Hsulf-1 expression reduced both anchorage-dependent and -independent cell growth and decreased FGF-2 mediated cell growth and invasion in this cell line. CONCLUSION: High expression of Hsulf-1 occurs in the stromal elements as well as in the tumor cells in pancreatic cancer and interferes with heparin-binding growth factor signaling

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Observer Sensitivity for Detection of Pulmonary Nodules in Ultra-Low Dose Computed Tomography Protocols Using a Third-Generation Dual-Source CT with Ultra-High Pitch—A Phantom Study

    No full text
    This study evaluates ultra-low-dose computed tomography (ULDCT) protocols concerning the detectability of pulmonary nodules. The influence of tube current settings, kernels, strength levels of third-generation iterative reconstruction algorithms, and pitch was investigated. A chest phantom with artificial spherical nodules of different densities and diameters was examined with a third-generation dual-source CT. Scanning and post-processing protocols, tube current levels, and ultra-high and non-high pitch modes were applied. Images were reconstructed with filtered back-projection (FBP) or advanced model-based iterative reconstruction (ADMIRE) algorithms. Sharp (Bl57) or medium-soft (Br36) convolution kernels were applied. The reading was performed by an experienced and an inexperienced reader. The highest observer sensitivity was found using a non-high pitch protocol at tube currents of 120 mAs and 90 mAs with the sharp kernel and iterative reconstruction level of 5. Non-high pitch protocols showed better detectability of solid nodules. Combinations with the medium-soft kernel achieved slightly higher observer sensitivity than with the sharp kernel. False positives (FP) occurred more often for subsolid nodules, at a tube current level of 120 mAs, and with the sharp kernel. A tube current level of 90 mAs combined with the highest iterative reconstruction level achieved the highest accuracy in lung nodule detection regardless of size, density, and reader experience

    BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion

    No full text
    Abstract Background Bone gamma-carboxyglutamate protein (BGLAP; osteocalcin) is a small, highly conserved molecule first identified in the mineralized matrix of bone. It has been implicated in the pathophysiology of various malignancies. In this study, we analyzed the expression and role of BGLAP in the normal human pancreas, chronic pancreatitis (CP), and pancreatic ductal adenocarcinoma (PDAC) using quantitative RT-PCR, immunohistochemistry, immunocytochemistry and enzyme immunoassays, as well as cell proliferation and invasion assays. Gene silencing was carried out using specific siRNA molecules. Results Compared to the normal pancreas, BGLAP mRNA and protein levels were not significantly different in CP and PDAC tissues. BGLAP was faintly present in the cytoplasm of normal acinar cells but was strongly expressed in the cytoplasm and nuclei of tubular complexes and PanIN lesions of CP and PDAC tissues. Furthermore, BGLAP expression was found in the cancer cells in PDAC tissues as well as in 4 cultured pancreatic cancer cell lines. TNFalpha reduced BGLAP mRNA and protein expression levels in pancreatic cancer cell lines. In addition, BGLAP silencing led to reduction of both cell growth and invasion in those cells. Conclusion BGLAP is expressed in pancreatic cancer cells, where it potentially increases pancreatic cancer cell growth and invasion through autocrine and/or paracrine mechanisms.</p

    Expression analysis of MAC30 in human pancreatic cancer and tumors of the gastrointestinal tract

    No full text
    Meningioma-associated protein, MAC30, is a protein with unknown function and cellular localization that is differentially expressed in certain malignancies. In the present study, the expression of MAC30 in a variety of normal and cancerous human gastrointestinal tissues, with special emphasis on pancreatic tissues was analyzed. Quantitative RT-PCR was utilized to compare MAC30 expression levels. In situ hybridization and immunohistochemistry were carried out to localize MAC30 mRNA and protein expression in normal and cancerous tissue samples of the esophagus, stomach, colon and pancreas. Furthermore, the effects of TGF-Ăź on the transcription of MAC30 mRNA were examined in pancreatic cancer cells. MAC30 mRNA was expressed in a wide variety of normal human tissues, being most abundant in testicular and gastric tissue samples. MAC30 mRNA levels were significantly increased in breast and colon cancer, but significantly decreased in pancreatic and renal cancer. TGF-Ăź down-regulated MAC30 mRNA levels in certain pancreatic cancer cells. MAC30 protein was localized in normal pancreatic tissues, mainly in acinar and islet cells, and in normal colon, gastric and esophageal tissues especially in the mucosal cells. MAC30 was strongly present in tubular complexes in pancreatic cancer tissues but weak to absent in pancreatic cancer cells of primary tumors and metastases. In contrast, esophageal, gastric and colon tumors displayed strong MAC30 immunoreactivity in the cancer cells. In conclusion, MAC30 is expressed in various normal and diseased human tissues. MAC30 up-regulation in certain tumors and down-regulation in others suggests that this protein plays a distinct role in human malignancies

    Tumor-Suppressor Function of SPARC-Like Protein 1/Hevin in Pancreatic Cancer

    Get PDF
    SPARC-like protein 1 (SPARCL1), a member of the SPARC family, is downregulated in various tumors. In the present study, the expression and localization of SPARCL1 were analyzed in a wide range of nontumorous and neoplastic pancreatic tissues by quantitative reverse transcription-polymerase chain reaction, laser capture microdissection, microarray analysis, and immunohistochemistry. For functional analysis, proliferation and invasion assays were used in cultured pancreatic cancer cells. Pancreatic ductal adenocarcinoma (PDAC) and other pancreatic neoplasms exhibited increased SPARCL1 mRNA levels compared to those of the normal pancreas. SPARCL1 mRNA levels were low to absent in microdissected and cultured pancreatic cancer cells, and promoter demethylation increased SPARCL1 levels only slightly in three of eight cell lines. SPARCL1 was observed in small capillaries in areas of inflammation/tumor growth and in some islet cells. In PDAC, 15.4% of vessels were SPARCL1-positive. In contrast, the percentage of SPARCL1-positive vessels was higher in chronic pancreatitis and benign and borderline pancreatic tumors. Recombinant SPARCL1 inhibited pancreatic cancer cell invasion and exerted moderate growth-inhibitory effects. In conclusion, SPARCL1 expression in pancreatic tissues is highly correlated with level of vascularity. Its anti-invasive effects and reduced expression in metastasis indicate tumor-suppressor function

    Expression of the Shwachman- Bodian-Diamond syndrome -SBDS- protein in human pancreatic cancer and chronic pancreatitis

    No full text
    Background: The Shwachman-Bodian- Diamond syndrome (SBDS) protein is a member of a highly conserved family which influences RNA activation and is associated with pancreatic, skeletal and bone marrow deficiencies, as well as hematological malignancies. Methods: In this study, the expression and localization of SBDS were investigated in normal human pancreatic tissues, chronic pancreatitis (CP) tissues, primary and metastatic pancreatic ductal adenocarcinoma (PDAC) tissues, as well as in cultured pancreatic cancer cell lines by immunohistochemistry, immunoblotting and immunocytochemistry. Results: In the normal pancreas, SBDS was localized in the cytoplasm of islet cells and ductal cells. In CP tissues, SBDS was found in the cytoplasm of ductal cells, tubular complexes, stromal fibroblasts and in PanIN1-2 lesions. In PDAC tissues, SBDS exhibited cytoplasmic and occasionally nuclear localization in tubular complexes, PanIN1-3 lesions, cancer cells, and stromal fibroblasts. Different levels of SBDS protein were detected in cultured pancreatic cancer cell lines. Conclusion: SBDS is expressed in normal, CP, and PDAC tissues, as well as in pancreatic cancer cell lines. The different expression and localization patterns suggest a role of SBDS in the pathogenesis of, or response to, inflammatory and neoplastic pancreatic diseases
    corecore