224 research outputs found

    A placebo-controlled trial of Korean red ginseng extract for preventing Influenza-like illness in healthy adults

    Get PDF
    <p>Abstracts</p> <p>Background</p> <p>Standardized Korean red ginseng extract has become the best-selling influenza-like illness (ILI) remedy in Korea, yet much controversy regarding the efficacy of the Korean red ginseng (KRG) in reducing ILI incidence remains. The aim of the study is to assess the efficacy of the KRG extract on the ILI incidence in healthy adults.</p> <p>Methods/Design</p> <p>We will conduct a randomized, double-blind, placebo-controlled study at the onset of the influenza seasons. A total of 100 subjects 30-70 years of age will be recruited from the general populations. The subjects will be instructed to take 9 capsules per day of either the KRG extract or a placebo for a period of 3 months. The primary outcome measure is to assess the frequency of ILI onset in participated subjects. Secondary variable measures will be included severity and duration of ILI symptoms. The ILI symptoms will be scored by subjects using a 4-point scale.</p> <p>Discussion</p> <p>This study is a randomized placebo controlled trial to evaluate the efficacy of the KRG extract compared to placebo and will be provided valuable new information about the clinical and physiological effects of the KRG extract on reduction of ILI incidence including flu and upper respiratory tract infections. The study has been pragmatically designed to ensure that the study findings can be implemented into clinical practice if KRG extract can be shown to be an effective reduction strategy in ILI incidence.</p> <p>Trial Registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01478009">NCT01478009</a>.</p

    Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy.</p> <p>Methods</p> <p>Doxorubicin was loaded onto a lipid-modified dextran based polymeric nano-system. The effect of various concentrations of doxorubicin alone or nanoparticle loaded doxorubicin on KHOS, KHOS<sub>R2</sub>, U-2OS, and U-2OS<sub>R2 </sub>cells was analyzed. Effects on drug retention, immunofluorescence, Pgp expression, and induction of apoptosis were also analyzed.</p> <p>Results</p> <p>Dextran nanoparticles loaded with doxorubicin had a curative effect on multidrug resistant osteosarcoma cell lines by increasing the amount of drug accumulation in the nucleus via Pgp independent pathway. Nanoparticles loaded with doxorubicin also showed increased apoptosis in osteosarcoma cells as compared with doxorubicin alone.</p> <p>Conclusion</p> <p>Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines. These findings may lead to new treatment options for MDR osteosarcoma.</p

    Adaptive intrapatient dose escalation of cisplatin in combination with low-dose vp16 in patients with nonsmall cell lung cancer

    Get PDF
    The objective of this phase II and pharmacologic study was to explore the feasibility toxicity and activity of adaptive intrapatient dose escalation of cisplatin in a dose-intensive weekly schedule using predefined levels of exposure, with the ultimate aim to improve the antitumour activity of the therapy in patients with nonsmall cell lung cancer (NSCLC). Platinum DNA-adduct levels in peripheral white blood cells during treatment were used as the primary parameter for adaptive dosing. If DNA-adduct levels were not available, the area under the concentration-time curve (AUC) of unbound platinum in plasma was used for dose adaptation. Target levels for DNA-adducts and AUC have been defined in a previously performed pharmacologic study. The feasibility of adaptive dosing was tested in 76 patients with stage IIIB and IV NSCLC, who were planned to receive 6 weekly courses of cisplatin at a starting dose of 70 mg m-2, together with daily low oral dose of 50 mg VP16. In total, 37 patients (49%) who were given more than one course received a dose increase varying from 10 to 55%. The majority of patients reached the defined target levels by a dose increase during course two. Relevant grade 2 neurotoxicity was observed in eight (10%) patients and reversible ototoxicity grade 2 in 14 (18%) patients. The strategy of adaptive intrapatient dose adjustment of cisplatin is practically feasible in a research setting even when results for dose adaptation have to be reported within a short time-period of I week. The toxicity appeared to be manageable in this cohort of patients. In some patients, exposure after the standard dose was substantially lower than the defined target level and significant dose escalations of more than 50% had to be applied. The response rate (RR) was relatively high: overall 40% (29 out of 72 patients) partial remission (PR), in patients with stage IIIB the RR was 60% (15 out of 25 patients) and with stage IV 30% (14 out of 47 patients). Randomised studies are needed to determine whether the adaptive dosing strategy results in better efficacy than standard dosing

    Exposure assessment of process-related contaminants in food by biomarker monitoring

    Get PDF
    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment

    The bodily social self: a link between phenomenal and narrative selfhood

    Get PDF
    The Phenomenal Self (PS) is widely considered to be dependent on body representations, whereas the Narrative Self (NS) is generally thought to rely on abstract cognitive representations. The concept of the Bodily Social Self (BSS) might play an important role in explaining how the high level cognitive self-representations enabling the NS might emerge from the bodily basis of the PS. First, the phenomenal self (PS) and narrative self (NS), are briefly examined. Next, the BSS is defined and its potential for explaining aspects of social cognition is explored. The minimal requirements for a BSS are considered, before reviewing empirical evidence regarding the development of the BSS over the first year of life. Finally, evidence on the involvement of the body in social distinctions between self and other is reviewed to illustrate how the BSS is affected by both the bottom up effects of multisensory stimulation and the top down effects of social identification

    Satellite confirmation of the dominance of chlorofluorocarbons in the global stratospheric chlorine budget

    Full text link
    OBSERVED increases in concentrations of chlorine in the stratosphere1-7 have been widely implicated in the depletion of lower-stratospheric ozone over the past two decades8-14. The present concentration of stratospheric chlorine is more than five times that expected from known natural 'background' emissions from the oceans and biomass burning15-18, and the balance has been estimated to be dominantly anthropogenic in origin, primarily due to the breakdown products of chlorofluorocarbons (CFCs)19,20. But despite the wealth of scientific data linking chlorofluorocarbon emissions to the observed chlorine increases, the political sensitivity of the ozone-depletion issue has generated a re-examination of the evidence21,22. Here we report a four-year global time series of satellite observations of hydrogen chloride (HCl) and hydrogen fluoride (HF) in the stratosphere, which shows conclusively that chlorofluorocarbon releases - rather than other anthropogenic or natural emissions - are responsible for the recent global increases in stratospheric chlorine concentrations. Moreover, all but a few per cent of observed stratospheric chlorine amounts can be accounted for by known natural and anthropogenic tropospheric emissions. Altogether, these results implicate the chlorofluorocarbon s beyond reasonable doubt as dominating ozone depletion in the lower stratosphere

    Effect of garlic on cardiovascular disorders: a review

    Get PDF
    Garlic and its preparations have been widely recognized as agents for prevention and treatment of cardiovascular and other metabolic diseases, atherosclerosis, hyperlipidemia, thrombosis, hypertension and diabetes. Effectiveness of garlic in cardiovascular diseases was more encouraging in experimental studies, which prompted several clinical trials. Though many clinical trials showed a positive effect of garlic on almost all cardiovascular conditions mentioned above, however a number of negative studies have recently cast doubt on the efficary of garlic specially its cholesterol lowering effect of garlic. It is a great challenge for scientists all over the world to make a proper use of garlic and enjoy its maximum beneficial effect as it is the cheapest way to prevent cardiovascular disease. This review has attempted to make a bridge the gap between experimental and clinical study and to discuss the possible mechanisms of such therapeutic actions of garlic

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions
    corecore