16 research outputs found

    Complex Morphology of the Intermediate Phase in Block Copolymers and Semicrystalline Polymers As Revealed by <sup>1</sup>H NMR Spin Diffusion Experiments

    No full text
    Nanostructured multiphase polymers exhibiting a mobile and a rigid phase also contain a phase of intermediate mobility that is usually assumed to be a continuous, uninterrupted interphase layer. This assumption is contrary to recent molecular-resolution micrographs and contradicts results from NMR spin diffusion experiments, all of which suggest a nontrivial interface structure. In this contribution, we reconsider our previous <sup>1</sup>H NMR spin diffusion data sets (Roos Colloid. Polym. Sci. 2014, 292, 1825) and perform optimized 2D and 3D numerical spin diffusion calculations to characterize the basic intermediate-phase morphological pattern, thus overcoming previous inconsistencies in data fitting. For the diblock copolymer poly­(butadiene)-poly­(styrene), PS<i>-<i>b</i>-</i>PB, we demonstrate that the interphase region comprises nanometer-size intermixed immobile, intermediate and mobile subregions. In contrast, for the semicrystalline polymer poly­(ε-caprolactone), PCL, the spin diffusion data are best reproduced by an intermediate phase that is fully embedded within the rigid phase, which is attributed to an imperfect crystalline structure. For both samples, the new findings reveal a complex discontinuous, dynamically inhomogeneous structure of the intermediate phase

    Entanglement Effects in Elastomers: Macroscopic vs Microscopic Properties

    No full text
    This Perspective highlights how entanglement effects on rubber elasticity can be unveiled by a combination of different macroscopic and microscopic methods, taking advantage of new developments in proton low-field NMR spectroscopy as applied to bulk and swollen rubbers. Specifically, the application of a powerful yet routinely applicable double-quantum method, combined with a back-extrapolation procedure over results measured at different degrees of swelling, allows one to characterize the recently introduced “phantom reference network” state, which only reflects contributions of actual cross-links and topologically trapped entanglements. We further present an assessment of the qualitative yet popular Mooney–Rivlin analysis of mechanical data, where the influence of entanglement contributions on the fitted, purely empirical parameters <i>C</i><sub>1</sub> and <i>C</i><sub>2</sub> is reconsidered in the context of different tube models of rubber elasticity. We also review the impact of entanglements on results of equilibrium swelling experiments and address the validity of the common Flory–Rehner approach, where we stress its qualitative nature and the need to use NMR observables for a correct estimation of the relevant volume fractions. We discuss semiquantitative estimations of the cross-link density from these macroscopic experiments with its microscopic determination by NMR on the example of lowly cross-linked synthetic and natural poly­(isoprene) rubber prepared by a novel UV-based curing protocol of dried latex based upon thiol–ene chemistry, which in contrast to previously studied thermally peroxide-cured natural rubber contain only small amounts of short-chain defects. We find that the entanglement effects in these samples can best be described by the Heinrich–Straube tube model with positive scaling exponent ν > 0.3 as well as by the slip-link model of Ball et al./Edwards–Vilgis with a slip parameter η > 0.1. A comparison with literature results demonstrates that these findings are not universal in that the apparent entanglement contribution depends significantly on the sample (in)­homogeneity, i.e., of the NMR-determined fraction of inelastic defects and spatial cross-linking inhomogeneities. This means that conclusions on the validity or invalidity of specific tube theories cannot be drawn without careful consideration of the network microstructure

    Influence of Chain Topology on Polymer Dynamics and Crystallization. Investigation of Linear and Cyclic Poly(ε-caprolactone)s by <sup>1</sup>H Solid-State NMR Methods

    No full text
    We report on the investigation of cyclic and comparable linear poly(ε-caprolactone)s (PεCL) with molecular weight between 50 and 80 kg/mol with regard to chain mobility in the melt and crystallinity using low-field solid-state <sup>1</sup>H NMR. Our results from NMR Hahn echo and more advanced multiquantum measurements demonstrate a higher segmental mobility of cyclics in the melt as compared to their linear counterparts. Rheological experiments indicate that the cyclics are less viscous than the linear analogues by about a factor of 2, confirming the NMR results. FID component analysis shows higher crystallinities of the cyclic samples by some percent under the condition of isothermal crystallization at 48 °C, suggesting that due to their enhanced overall mobility in the melt, the cyclics reach a more perfect morphology leading to higher crystallinity. We compare this finding with results from DSC measurements obtained under identical conditions and critically evaluate the applicability of polymer crystallinity determination from nonisothermal crystallization investigations by DSC. We further highlight the use of nucleating agents to investigate the particular effect of crystal growth on (nonisothermal) crystallization, separated from the influence of nucleation. These experiments indicate a faster crystal growth for cyclic samples

    Large-Scale Diffusion of Entangled Polymers along Nanochannels

    No full text
    Changes in large-scale polymer diffusivity along interfaces, arising from transient surface contacts at the nanometer scale, are not well understood. Using proton pulsed-gradient NMR, we here study the equilibrium micrometer-scale self-diffusion of poly­(butadiene) chains along ∼100 μm long, 20 and 60 nm wide channels in alumina, which is a system without confinement-related changes in segmental relaxation time. Unlike previous reports on nonequilibrium start-up diffusion normal to an interface or into particulate nanocomposites, we find a reduction of the diffusivity that appears to depend only upon the pore diameter but not on the molecular weight in a range between 2 and 24 kg/mol. We rationalize this by a simple volume-average model for the monomeric friction coefficient, which suggests a 10-fold surface-enhanced friction on the scale of a single molecular layer. Further support is provided by applying our model to the analysis of published data on large-scale diffusion in thin films
    corecore