1,947 research outputs found

    Electrohydrodynamic and Aerosol Jet Printing for the Copatterning of Polydimethylsiloxane and Graphene Platelet Inks

    No full text
    The performance of soft sensing and actuation devices is dependent on their design, the electro‐mechanical response of materials, and the ability to copattern structural and functional features. For film based soft structures, such as wearable sensors and artificial muscles, manufacturing challenges exist that prevent the translation of technology from laboratory to practical application. In this work, a hybrid manufacturing technique is presented that integrates electro‐hydrodynamic and aerosol jet deposition to print multilayer, multimaterial structures. The combined approach overcomes the respective rheological constraints of the individual processes, while presenting a pathway to higher resolution computer‐controlled patterning. Electro‐hydrodynamic deposition of a polydimethylsiloxane elastomer is demonstrated and characterized, before being combined with aerosol jet deposition of a graphene platelet ink to produce functional devices. A proof‐of‐concept, multilayer capacitive sensor is presented as a first demonstration of the manufacturing technology

    Less is more: A simple methyl-TROSY based pulse scheme offers improved sensitivity in applications to high molecular weight complexes

    Get PDF
    The HMQC pulse sequence and variants thereof have been exploited in studies of high molecular weight protein complexes, taking advantage of the fact that fast and slow relaxing magnetization components are sequestered along two distinct magnetization transfer pathways. Despite the simplicity of the HMQC scheme an even shorter version can be designed, based on elimination of the terminal refocusing period, as a further means of increasing signal. Here we present such an experiment, and show that significant sensitivity gains, in some cases by factors of two or more, are realized in studies of proteins varying in molecular masses from 100 kDa to 1 MDa

    A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing

    No full text
    Aerosol Jet Printing (AJP) is an emerging contactless direct write approach aimed at the production of fine features on a wide range of substrates. Originally developed for the manufacture of electronic circuitry, the technology has been explored for a range of applications, including, active and passive electronic components, actuators, sensors, as well as a variety of selective chemical and biological responses. Freeform deposition, coupled with a relatively large stand-off distance, is enabling researchers to produce devices with increased geometric complexity compared to conventional manufacturing or more commonly used direct write approaches. Wide material compatibility, high resolution and independence of orientation have provided novelty in a number of applications when AJP is conducted as a digitally driven approach for integrated manufacture. This overview of the technology will summarise the underlying principles of AJP, review applications of the technology and discuss the hurdles to more widespread industry adoption. Finally, this paper will hypothesise where gains may be realised through this assistive manufacturing process

    Direct metallisation of polyetherimide substrates by activation with different metals

    Get PDF
    This article reports the performance of different metallic ions and nanoparticles (Ag, Cu, Ni, Pd, Cr, Co, Au and Fe) used as seed layers, formed by chemical or optical reduction, for the electroless Cu plating of metal tracks onto polyetherimide (PEI). Plated Cu performance was tested by adhesion, electrical conductivity, plating rate, XPS, SEM, XRD and EDX analysis. The application of Cu and Ag seeds resulted in high quality electroless Cu deposits presenting strong adhesion properties and high conductivity ((2.0 ± 0.5) × 107 S/m and (3.6 ± 0.2) × 107 S/m, respectively) compared with bulk copper (5.96 × 107 S/m). Performance is attributed to the high surface density and uniformity of seed layers. Of the metals, only Ag ions were photoreduced under the conditions applied and were subsequently used to electroless Cu plate high quality track features of 150 μm width. The application of sulphuric acid pre-treatment to PEI prior to Ag ion exchange, improved the photoinitiated track formation process, as demonstrated by a threefold increase to both photoinduced Ag nanoparticle density on the surface and electroless Cu plating rate, as well as improved electroless Cu adhesion to PEI

    A rapid technique for the direct metallization of PDMS substrates for flexible and stretchable electronics applications

    Get PDF
    Metallization of a polydimethylsiloxane (PDMS)-based substrate is a challenge due to the difficulties in forming crack-free polymer and metal features using standard deposition techniques. Frequently, additional adhesion layers, rigid substrates, multiple processing steps (lift-off and etching) and expensive metal sputtering techniques are required, to achieve such metal patterns. This work presents a novel and rapid technique for the direct metallization of PDMS substrates using photolithography and electroless copper plating. The method has the advantage of not requiring expensive vacuum processing or multiple metallization steps. Electroless copper layer is demonstrated to have a strong adhesion to PDMS substrate with a high conductivity of (3.6 ± 0.7) × 107 S/m, which is close to the bulk copper (5.9 × 107 S/m). The copper-plated PDMS substrate displays mechanical and electrical stability whilst undergoing stretching deformations up to 10% due to applied strain. A functional electronic circuit was fabricated as a demonstration of the mechanical integrity of the copper-plated PDMS after bending

    A Rapid Photopatterning Method for Selective Plating of 2D and 3D Microcircuitry on Polyetherimide

    Get PDF
    In this work, a method for the rapid synthesis of metallic microtracks on polyetherimide is presented. The method relies on the photosynthesis of silver nanoparticles on the surface of the polymer substrates from photosensitive silver chloride (AgCl), which is synthesized directly on the polyetherimide surface. The study reveals that the use of AgCl as a photosensitive intermediate accelerates the reactions leading to the formation of silver nanoparticles by up to two orders of magnitude faster than other photodecomposition schemes. The patterning can be conducted under blue light, with notable advantages over UV exposure. Polymers of significant interest to the microelectronics and 3D printing industries can be directly patterned by light using this photography‐inspired technique at throughputs high enough to be commercially advantageous. Light exposures as short as a few seconds are sufficient to allow the direct metallization of the illuminated polyetherimide surface. The results show that the silver required for the seed layer is minimal, and the later copper electroless plating results in the selective growth of conductive tracks for circuitry on the light‐patterned areas, both on flexible films and 3D printed surfaces

    Oral hygiene improvement: a pragmatic approach based upon risk and motivation levels

    Get PDF
    Good oral hygiene has always been the cornerstone of public and private dental health promotion. However, this has often been based upon incorrect assumptions. The public is not always willing and does not always need to change its oral health behavior to the same extent as that expected by the dental profession. The present commentary emphasizes the need to modify oral hygiene instruction according to specific risk and motivation levels. Dentistry needs to be flexible in accepting new evidence-based modalities of oral health promotion. Dentists, dental hygienists and the entire health care team need to accept that the traditional methods of oral health education are not always effective

    Digitally-Driven Hybrid Manufacture of Ceramic Thick-Film Substrates

    Get PDF
    Ceramic substrates are commonly used in the electronics industry across a range of applications such as automotive, aerospace, industrial monitoring, power electronics and electromagnetic devices due to their ability to withstand high temperatures, pressures, radiation and mechanical shock. This paper will present the development of a new digitally-driven hybrid manufacturing process which overcomes many of the current limitations of stand-alone Additive Manufacturing for the production of precision engineered ceramic substrates and packages. This is achieved by interleaving ceramic paste extrusion with sacrificial support printing and micro-machining to produce a three-dimensional ceramic green-state part. A number of substrates were fabricated using a high viscosity, non-Newtonian paste consisting of 96wt% alumina. Thermally processing the substrate at temperatures in excess of 1400 °C yields a monolithic ceramic substrate with resultant shrinkages of ∼18% and part densities of ∼99.8%. The 3D ceramic part is then processed using computer-controlled equipment to selectively dispense a conformal circuit using silver thick film conductor paste, followed by solder dispensing and pick and place surface mount assembly of components. This fully digitally driven approach enables new design freedoms and customization currently not possible with conventional template driven manufacturing methods of ceramic electronic packages

    Extreme environment interconnects and packaging for power electronics

    Get PDF
    This paper presents the combination of an innovative assembly and packaging process utilising solid liquid inter diffusion (SLID) Cu-Sn interconnects within bespoke ceramic substrates that have been produced using additive manufacturing (AM). The resultant process chain supports the integration and packaging of power electronics for harsh environment applications. Here, the authors explore how the bond strength and composition of Cu-Sn SLID interconnects vary during exposure to thermal-mechanical load profiles. Samples of Cu-Sn are exposed to thermal loading up to 300°C and integrated mechanical loading via high random frequency vibrations (1 and 2000 Hz). In parallel, micro-extrusion printing methods in which high-viscosity ceramic pastes are dispensed through cylindrical fine nozzles (2–250 µm) using CNC-controlled motion has enabled complex 3D geometries to be fabricated. Additional secondary conductor deposition after firing the ceramic substrate enables the electronic circuitry to be generated without dedicated tooling, masks, or templates. This work presents the first fully 3D-printed ceramic-based electronic substrates. To demonstrate the applications of this printing method, a 555 timer circuit with flashing LED has been printed and the components surface mount assembled. The resultant ceramic substrates are dense, mechanically robust, and the reflowed circuit functions exactly as intended

    Inertial Tracking System for Monitoring Dual Mobility Hip Implants In Vitro

    Get PDF
    Dual mobility (DM) implants are being increasingly used for total hip arthroplasties due to the additional range of motion and joint stability they afford over more traditional implant types. Currently, there are no reported methods for monitoring their motions under realistic operating conditions while in vitro and, therefore, it is challenging to predict how they will function under clinically relevant conditions and what failure modes may exist. This study reports the development, calibration, and validation of a novel inertial tracking system that directly mounts to the mobile liner of DM implants. The tracker was custom built and based on a miniaturized, off-the-shelf inertial measurement unit (IMU) and employed a gradient-decent sensor fusion algorithm for amalgamating nine degree-of-freedom IMU readings into three-axis orientation estimates. Additionally, a novel approach to magnetic interference mitigation using a fixed solenoid and magnetic field simulation was evaluated. The system produced orientation measurements to within 1.0° of the true value under ideal conditions and 3.9° with a negligible drift while in vitro, submerged in lubricant, and without a line of sight
    corecore