7,423 research outputs found
Cosmological Constraints on Late-time Entropy Production
We investigate cosmological effects concerning the late-time entropy
production due to the decay of non-relativistic massive particles. The
thermalization process of neutrinos after the entropy production is properly
solved by using the Boltzmann equation. If a large entropy production takes
place at late time t 1 sec, it is found that a large fraction of
neutrinos cannot be thermalized. This fact loosens the tight constraint on the
reheating temperature T_R from the big bang nucleosynthesis and T_R could be as
low as 0.5 MeV. The influence on the large scale structure formation and cosmic
microwave background anisotropies is also discussed.Comment: 4 pages, using RevTeX and five postscript figures, comments added, to
appear in Phys. Rev. Let
Reheating of the Universe and Population III
We note that current observational evidence strongly favors a conventional
recombination of ionized matter subsequent to redshift z=1200, followed by
reionization prior to redshift z=5 and compute how this would have occurred in
a standard scenario for the growth of structure. Extending prior semi-analytic
work, we show by direct, high-resolution numerical simulations (of a COBE
normalized CDM+Lambda model) that reheating, will occur in the interval 15>z>7,
followed by reionization and accompanied by a significant increase in the Jeans
mass. However, the evolution of the Jeans mass does not significantly affect
star formation in dense, self-shielded clumps of gas, which are detached from
the thermal evolution of the rest of the universe. On average, the growth of
the Jeans mass tracks the growth of the nonlinear mass scale, a result we
suspect is due to nonlinear feedback effects. Cooling on molecular hydrogen
leads to a burst of star formation prior to reheating which produces Population
III stars with Omega_* reaching 10^{-5.5} and Z/Z_sun reaching 10^{-3.7} by
z=14. Star formation subsequently slows down as molecular hydrogen is depleted
by photo-destruction and the rise of the temperature. At later times, z<10,
when the characteristic virial temperature of gas clumps reach 10,000 degrees,
star formation increases again as hydrogen line cooling become efficient.
Objects containing Pop III stars accrete mass with time and, as soon as they
reach 10,000 K virial temperature, they engage in renewed star formation and
turn into normal Pop II objects having an old Pop III metal poor component.Comment: six postscript figures included, submitted to ApJ
Spectrum of Background X-rays from Moduli Dark Matter
We examine the -ray spectrum from the decay of the dark-matter moduli with
mass keV, in particular, paying attention to the line
spectrum from the moduli trapped in the halo of our galaxy. It is found that
with the energy resolution of the current experiments (%) the line
intensity is about twice stronger than that of the continuum spectrum from the
moduli that spread in the whole universe. Therefore, in the future experiments
with higher energy resolutions it may be possible to detect such line photons.
We also investigate the -ray spectrum emitted from the decay of the
multi-GeV moduli. It is shown that the emitted photons may form MeV-bump in the
-ray spectrum. We also find that if the modulus mass is of the order of
10 GeV, the emitted photons at the peak of the continuum spectrum loses their
energy by the scattering and the shape of the spectrum is significantly
changed, which makes the constraint weaker than that obtained in the previous
works.Comment: 14 pages (RevTeX file) including four postscript figures, reviced
version to be published in Physical Review
Coexistence of Superconductivity and Antiferromagnetism in Heavy-Fermion Superconductor CeCu_{2}(Si_{1-x}Ge_{x})_{2} Probed by Cu-NQR --A Test Case for the SO(5) Theory--
We report on the basis of Cu-NQR measurements that superconductivity (SC) and
antiferromagnetism (AF) coexist on a microscopic level in
CeCu_{2}(Si_{1-x}Ge_{x})_{2}, once a tiny amount of 1%Ge (x = 0.01) is
substituted for Si. This coexistence arises because Ge substitution expands the
unit-cell volume in nearly homogeneous CeCu2Si2 where the SC coexists with
slowly fluctuating magnetic waves. We propose that the underlying exotic phases
of SC and AF in either nearly homogeneous or slightly Ge substituted CeCu2Si2
are accountable based on the SO(5) theory that unifies the SC and AF. We
suggest that the mechanism of the SC and AF is common in CeCu2Si2.Comment: 7 pages with 6 figures embedded in the text. To be published in J.
Phys. Condens. Matter, 200
Hunting for Isocurvature Modes in the CMB non-Gaussianities
We investigate new shapes of local primordial non-Gaussianities in the CMB.
Allowing for a primordial isocurvature mode along with the main adiabatic one,
the angular bispectrum is in general a superposition of six distinct shapes:
the usual adiabatic term, a purely isocurvature component and four additional
components that arise from correlations between the adiabatic and isocurvature
modes. We present a class of early Universe models in which various hierarchies
between these six components can be obtained, while satisfying the present
upper bound on the isocurvature fraction in the power spectrum. Remarkably,
even with this constraint, detectable non-Gaussianity could be produced by
isocurvature modes. We finally discuss the prospects of detecting these new
shapes with the Planck satellite.Comment: 9 pages, 2 figure
Cosmological Moduli Problem in Gauge-mediated Supersymmetry Breaking Theories
A generic class of string theories predicts the existence of light moduli
fields, and they are expected to have masses comparable to the
gravitino mass which is in a range of keV--1GeV in
gauge-mediated supersymmetry breaking theories. Such light fields with weak
interactions suppressed by the Planck scale can not avoid some stringent
cosmological constraints, that is, they suffer from `cosmological moduli
problems'. We show that all the gravitino mass region keV 1GeV is excluded by the constraints even if we incorporate a
late-time mini-inflation (thermal inflation). However, a modification of the
original thermal inflation model enables the region keV 500keV to survive the constraints. It is also stressed that
the moduli can be dark matter in our universe for the mass region keV
100keV.Comment: A few changes in section IV and
Isocurvature perturbations in extra radiation
Recent cosmological observations, including measurements of the CMB
anisotropy and the primordial helium abundance, indicate the existence of an
extra radiation component in the Universe beyond the standard three neutrino
species. In this paper we explore the possibility that the extra radiation has
isocurvatrue fluctuations. A general formalism to evaluate isocurvature
perturbations in the extra radiation is provided in the mixed inflaton-curvaton
system, where the extra radiation is produced by the decay of both scalar
fields. We also derive constraints on the abundance of the extra radiation and
the amount of its isocurvature perturbation. Current observational data favors
the existence of an extra radiation component, but does not indicate its having
isocurvature perturbation. These constraints are applied to some particle
physics motivated models. If future observations detect isocurvature
perturbations in the extra radiation, it will give us a hint to the origin of
the extra radiation.Comment: 41 pages, 8 figures; version accepted for publication in JCA
Cosmological Constraint on the String Dilaton in Gauge-mediated Supersymmetry Breaking Theories
The dilaton field in string theories (if exists) is expected to have a mass
of the order of the gravitino mass which is in a range of
keV--1GeV in gauge-mediated supersymmetry breaking models. If it is
the case, the cosmic energy density of coherent dilaton oscillation easily
exceeds the critical density of the present universe. We show that even if this
problem is solved by a late-time entropy production (thermal inflation) a
stringent constraint on the energy density of the dilaton oscillation is
derived from experimental upperbounds on the cosmic X()-ray
backgrounds. This excludes an interesting mass region, , in gauge-mediated supersymmetry breaking models.Comment: 13 pages (RevTex file including one figure, use psfig), revised
version to be published in Physical Review Letter
Nonlinear electron-phonon coupling in doped manganites
We employ time-resolved resonant x-ray diffraction to study the melting of
charge order and the associated insulator-metal transition in the doped
manganite PrCaMnO after resonant excitation of a
high-frequency infrared-active lattice mode. We find that the charge order
reduces promptly and highly nonlinearly as function of excitation fluence.
Density functional theory calculations suggest that direct anharmonic coupling
between the excited lattice mode and the electronic structure drive these
dynamics, highlighting a new avenue of nonlinear phonon control
- âŠ