29 research outputs found

    Robust Single-Shot Spin Measurement with 99.5% Fidelity in a Quantum Dot Array

    Full text link
    We demonstrate a new method for projective single-shot measurement of two electron spin states (singlet versus triplet) in an array of gate-defined lateral quantum dots in GaAs. The measurement has very high fidelity and is robust with respect to electric and magnetic fluctuations in the environment. It exploits a long-lived metastable charge state, which increases both the contrast and the duration of the charge signal distinguishing the two measurement outcomes. This method allows us to evaluate the charge measurement error and the spin-to-charge conversion error separately. We specify conditions under which this method can be used, and project its general applicability to scalable quantum dot arrays in GaAs or silicon.Comment: 13 pages, 3 figure

    Gaussian breeding for encoding a qubit in propagating light

    Full text link
    Practical quantum computing requires robust encoding of logical qubits in physical systems to protect fragile quantum information. Currently, the lack of scalability limits the logical encoding in most physical systems, and thus the high scalability of propagating light can be a game changer for realizing a practical quantum computer. However, propagating light also has a drawback: the difficulty of logical encoding due to weak nonlinearity. Here, we propose Gaussian breeding that encodes arbitrary Gottesman-Kitaev-Preskill (GKP) qubits in propagating light. The key idea is the efficient and iterable generation of quantum superpositions by photon detectors, which is the most widely used nonlinear element in quantum propagating light. This formulation makes it possible to systematically create the desired qubits with minimal resources. Our simulations show that GKP qubits above a fault-tolerant threshold, including ``magic states'', can be generated with a high success probability and with a high fidelity exceeding 0.99. This result fills an important missing piece toward practical quantum computing.Comment: 19 pages, 2 figure

    Quantum nondemolition measurement of an electron spin qubit

    Full text link
    Measurement of quantum systems inevitably involves disturbance in various forms. Within the limits imposed by quantum mechanics, however, one can design an "ideal" projective measurement that does not introduce a back action on the measured observable, known as a quantum nondemolition (QND) measurement. Here we demonstrate an all-electrical QND measurement of a single electron spin in a gate-defined quantum dot via an exchange-coupled ancilla qubit. The ancilla qubit, encoded in the singlet-triplet two-electron subspace, is entangled with the single spin and subsequently read out in a single shot projective measurement at a rate two orders of magnitude faster than the spin relaxation. The QND nature of the measurement protocol is evidenced by observing a monotonic increase of the readout fidelity over one hundred repetitive measurements against arbitrary input states. We extract information from the measurement record using the method of optimal inference, which is tolerant to the presence of the relaxation and dephasing. The QND measurement allows us to observe spontaneous spin flips (quantum jumps) in an isolated system with small disturbance. Combined with the high-fidelity control of spin qubits, these results pave the way for various measurement-based quantum state manipulations including quantum error correction protocols.Comment: This is a pre-print of an article published in Nature Nanotechnology. The final authenticated version is available online at: https://doi.org/10.1038/s41565-019-0426-

    Generation of Highly Pure Single-Photon State at Telecommunication Wavelength

    Full text link
    Telecommunication wavelength with well-developed optical communication technologies and low losses in the waveguide are advantageous for quantum applications. However, an experimental generation of non-classical states called non-Gaussian states at the telecommunication wavelength is still underdeveloped. Here, we generate highly-pure-single-photon states, one of the most primitive non-Gaussian states, by using a heralding scheme with an optical parametric oscillator and a superconducting nano-strip photon detector. The Wigner negativity, the indicator of non-classicality, of the generated single photon state is 0.228±0.004-0.228\pm0.004, corresponded to 85.1±0.7%85.1\pm0.7\% of single photon and the best record of the minimum value at all wavelengths. The quantum-optics-technology we establish can be easily applied to the generation of various types of quantum states, opening up the possibility of continuous-variable-quantum-information processing at telecommunication wavelengths.Comment: 10 pages, 6 figure

    Coherence of a driven electron spin qubit actively decoupled from quasi-static noise

    Full text link
    The coherence of electron spin qubits in semiconductor quantum dots suffers mostly from low-frequency noise. During the last decade, efforts have been devoted to mitigate such noise by material engineering, leading to substantial enhancement of the spin dephasing time for an idling qubit. However, the role of the environmental noise during spin manipulation, which determines the control fidelity, is less understood. We demonstrate an electron spin qubit whose coherence in the driven evolution is limited by high-frequency charge noise rather than the quasi-static noise inherent to any semiconductor device. We employed a feedback control technique to actively suppress the latter, demonstrating a π\pi-flip gate fidelity as high as 99.04±0.23%99.04\pm 0.23\,\% in a gallium arsenide quantum dot. We show that the driven-evolution coherence is limited by the longitudinal noise at the Rabi frequency, whose spectrum resembles the 1/f1/f noise observed in isotopically purified silicon qubits.Comment: 10 pages, 7 figure

    Quantum arbitrary waveform generator

    Full text link
    Controlling the waveform of light is the key for a versatile light source in classical and quantum electronics. Although pulse shaping of classical light is a mature technique and has been used in various fields, more advanced applications would be realized by a light source that generates arbitrary quantum light with arbitrary temporal waveform. We call such a device a quantum arbitrary waveform generator (Q-AWG). The Q-AWG must be able to handle versatile quantum states of light, which are fragile. Thus, the Q-AWG requires a radically different methodology from classical pulse shaping. In this paper, we invent an architecture of Q-AWGs that can operate semi-deterministically at a repetition rate over GHz in principal. We demonstrate its core technology via generating highly non-classical states with waveforms that have never been realized before. This result would lead to powerful quantum technologies based on Q-AWGs such as practical optical quantum computing.Comment: 24 pages, 5 figure

    Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1-STAT4 region

    Get PDF
    IntroductionRecent studies identified STAT4 (signal transducers and activators of transcription-4) as a susceptibility gene for systemic lupus erythematosus (SLE). STAT1 is encoded adjacently to STAT4 on 2q32.2-q32.3, upregulated in peripheral blood mononuclear cells from SLE patients, and functionally relevant to SLE. This study was conducted to test whether STAT4 is associated with SLE in a Japanese population also, to identify the risk haplotype, and to examine the potential genetic contribution of STAT1. To accomplish these aims, we carried out a comprehensive association analysis of 52 tag single nucleotide polymorphisms (SNPs) encompassing the STAT1-STAT4 region.MethodsIn the first screening, 52 tag SNPs were selected based on HapMap Phase II JPT (Japanese in Tokyo, Japan) data, and case-control association analysis was carried out on 105 Japanese female patients with SLE and 102 female controls. For associated SNPs, additional cases and controls were genotyped and association was analyzed using 308 SLE patients and 306 controls. Estimation of haplotype frequencies and an association study using the permutation test were performed with Haploview version 4.0 software. Population attributable risk percentage was estimated to compare the epidemiological significance of the risk genotype among populations.ResultsIn the first screening, rs7574865, rs11889341, and rs10168266 in STAT4 were most significantly associated (P < 0.01). Significant association was not observed for STAT1. Subsequent association studies of the three SNPs using 308 SLE patients and 306 controls confirmed a strong association of the rs7574865T allele (SLE patients: 46.3%, controls: 33.5%, P = 4.9 × 10-6, odds ratio 1.71) as well as TTT haplotype (rs10168266/rs11889341/rs7574865) (P = 1.5 × 10-6). The association was stronger in subgroups of SLE with nephritis and anti-double-stranded DNA antibodies. Population attributable risk percentage was estimated to be higher in the Japanese population (40.2%) than in Americans of European descent (19.5%).ConclusionsThe same STAT4 risk allele is associated with SLE in Caucasian and Japanese populations. Evidence for a role of STAT1 in genetic susceptibility to SLE was not detected. The contribution of STAT4 for the genetic background of SLE may be greater in the Japanese population than in Americans of European descent
    corecore