128 research outputs found

    Evolution of the primate glutamate taste sensor from a nucleotide sensor

    Get PDF
    霊長類におけるグルタミン酸の旨味の起源 --体の大きな霊長類は旨味感覚で葉の苦さを克服--. 京都大学プレスリリース. 2021-08-30.Taste perception plays an essential role in food selection. Umami (savory) tastes are sensed by a taste receptor complex, T1R1/T1R3, that detects proteinogenic amino acids. High sensitivity to l-glutamate (l-Glu) is a characteristic of human T1R1/T1R3, but the T1R1/T1R3 of other vertebrates does not consistently show this l-Glu response. Here, we demonstrate that the l-Glu sensitivity of T1R1/T1R3 is a derived state that has evolved repeatedly in large primates that rely on leaves as protein sources, after their divergence from insectivorous ancestors. Receptor expression experiments show that common amino acid substitutions at ligand binding sites that render T1R1/T1R3 sensitive to l-Glu occur independently at least three times in primate evolution. Meanwhile T1R1/T1R3 senses 5′-ribonucleotides as opposed to l-Glu in several mammalian species, including insectivorous primates. Our chemical analysis reveal that l-Glu is one of the major free amino acids in primate diets and that insects, but not leaves, contain large amounts of free 5′-ribonucleotides. Altering the ligand-binding preference of T1R1/T1R3 from 5′-ribonucleotides to l-Glu might promote leaf consumption, overcoming bitter and aversive tastes. Altogether, our results provide insight into the foraging ecology of a diverse mammalian radiation and help reveal how evolution of sensory genes facilitates invasion of new ecological niches

    Lymph Node Stromal Cell Subsets

    Get PDF
    The spatiotemporal regulation of immune responses in the lymph node (LN) depends on its sophisticated tissue architecture, consisting of several subcompartments supported by distinct fibroblastic stromal cells (FSCs). However, the intricate details of stromal structures and associated FSC subsets are not fully understood. Using several gene reporter mice, we sought to discover unrecognized stromal structures and FSCs in the LN. The four previously identified FSC subsets in the cortex are clearly distinguished by the expression pattern of reporters including PDGFRb, CCL21-ser, and CXCL12. Herein, we identified a unique FSC subset expressing both CCL21-ser and CXCL12 in the deep cortex periphery (DCP) that is characterized by preferential B cell localization. This subset was clearly different fromCXCL12highLepRhigh FSCs in themedullary cord, which harbors plasma cells. B cell localization in the DCP was controlled chiefly by CCL21-ser and, to a lesser extent, CXCL12. Moreover, the optimal development of the DCP as well as medulla requires B cells. Together, our findings suggest the presence of a unique microenvironment in the cortex-medulla boundary and offer an advanced view of the multi-layered stromal framework constructed by distinct FSC subsets in the LN

    Flecainide reduces ventricular arrhythmias via a mechanism that differs from that of β-blockers in catecholaminergic polymorphic ventricular tachycardia

    Get PDF
    AbstractBackgroundCatecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterized by episodic ventricular tachycardia induced by adrenergic stress. Although β-blockers are used as first-line therapy, their therapeutic effects are largely incomplete. Flecainide has recently been shown to modify the molecular defects in CPVT. The aim of this study was to investigate the effects of flecainide as an add-on to conventional therapy on exercise-induced ventricular arrhythmia and compare them with those of conventional therapy alone.MethodsThe study included 5 CPVT patients with a mutation in RYR2. They experienced episodic arrhythmic events despite conventional β-blocker therapy and were therefore given flecainide in addition. The effects of the addition of flecainide therapy on ventricular arrhythmia during exercise testing were compared with those of conventional therapy alone.ResultsBoth β-blockers alone and with additional flecainide increased the maximal workload attained at the onset of ventricular arrhythmia; however, only flecainide increased the sinus rate at the onset of ventricular arrhythmias. Furthermore, flecainide increased the exercise capacity by preventing exercise-induced arrhythmias. During a follow-up period of 17±2 months, 1 patient experienced recurrent arrhythmic episodes that were associated with noncompliance. All patients reported improvements in their ability to perform the activities of daily living.ConclusionFlecainide effectively reduced ventricular arrhythmias via a mechanism that differs from that of β-blockers in genotype-positive patients with CPVT. The specific effects of flecainide may be critical in the improvement noted in the patients' ability to perform daily activities

    Gravitational Wave Signatures of Hyperaccreting Collapsar Disks

    Full text link
    By performing two-dimensional special relativistic (SR) magnetohydrodynamic simulations, we study possible signatures of gravitational waves (GWs) in the context of the collapsar model for long-duration gamma-ray bursts. In our SR simulations, the central black hole is treated as an absorbing boundary. By doing so, we focus on the GWs generated by asphericities in neutrino emission and matter motions in the vicinity of the hyperaccreting disks. We compute nine models by adding initial angular momenta and magnetic fields parametrically to a precollapse core of a 35M35 M_{\odot} progenitor star. As for the microphysics, a realistic equation of state is employed and the neutrino cooling is taken into account via a multiflavor neutrino leakage scheme. To accurately estimate GWs produced by anisotropic neutrino emission, we perform a ray-tracing analysis in general relativity by a post-processing procedure. By employing a stress formula that includes contributions both from magnetic fields and special relativistic corrections, we study also the effects of magnetic fields on the gravitational waveforms. We find that the GW amplitudes from anisotropic neutrino emission show a monotonic increase with time, whose amplitudes are much larger than those from matter motions of the accreting material. We show that the increasing trend of the neutrino GWs stems from the excess of neutrino emission in the direction near parallel to the spin axis illuminated from the hyperaccreting disks. We point out that a recently proposed future space-based interferometer like Fabry-Perot type DECIGO would permit the detection of these GW signals within \approx 100 Mpc.Comment: 38 pages, 14 figures, ApJ in pres

    A Distinct Subset of Fibroblastic Stromal Cells Constitutes the Cortex-Medulla Boundary Subcompartment of the Lymph Node

    Get PDF
    The spatiotemporal regulation of immune responses in the lymph node (LN) depends on its sophisticated tissue architecture, consisting of several subcompartments supported by distinct fibroblastic stromal cells (FSCs). However, the intricate details of stromal structures and associated FSC subsets are not fully understood. Using several gene reporter mice, we sought to discover unrecognized stromal structures and FSCs in the LN. The four previously identified FSC subsets in the cortex are clearly distinguished by the expression pattern of reporters including PDGFRβ, CCL21-ser, and CXCL12. Herein, we identified a unique FSC subset expressing both CCL21-ser and CXCL12 in the deep cortex periphery (DCP) that is characterized by preferential B cell localization. This subset was clearly different from CXCL12highLepRhigh FSCs in the medullary cord, which harbors plasma cells. B cell localization in the DCP was controlled chiefly by CCL21-ser and, to a lesser extent, CXCL12. Moreover, the optimal development of the DCP as well as medulla requires B cells. Together, our findings suggest the presence of a unique microenvironment in the cortex-medulla boundary and offer an advanced view of the multi-layered stromal framework constructed by distinct FSC subsets in the LN
    corecore