5,669 research outputs found

    A test of "fluctuation theorem" in non-Markovian open quantum systems

    Full text link
    We study fluctuation theorems for open quantum systems with a non-Markovian heat bath using the approach of quantum master equations and examine the physical quantities that appear in those fluctuation theorems. The approach of Markovian quantum master equations to the fluctuation theorems was developed by Esposito and Mukamel [Phys. Rev. E {\bf73}, 046129 (2006)]. We show that their discussion can be formally generalized to the case of a non-Markovian heat bath when the local system is linearly connected to a Gaussian heat bath with the spectrum distribution of the Drude form. We found by numerically simulating the spin-boson model in non-Markovian regime that the "detailed balance" condition is well satisfied except in a strongly non-equilibrium transient situation, and hence our generalization of the definition of the "entropy production" is almost always legitimate. Therefore, our generalization of the fluctuation theorem seems meaningful in wide regions.Comment: 21 pages, 5 figure

    The origin of the phase separation in partially deuterated κ\kappa-(ET)2_2Cu[N(CN)2_2]Br studied by infrared magneto-optical imaging spectroscopy

    Full text link
    The direct observation of the phase separation between the metallic and insulating states of 75 %-deuterated κ\kappa-(ET)2_2Cu[N(CN)2_2]Br (d33d33) using infrared magneto-optical imaging spectroscopy is reported, as well as the associated temperature, cooling rate, and magnetic field dependencies of the separation. The distribution of the center of spectral weight () of d33d33 did not change under any of the conditions in which data were taken and was wider than that of the non-deuterated material. This result indicates that the inhomogenity of the sample itself is important as part of the origin of the metal - insulator phase separation.Comment: 4 pages, 3 figures, accepted for publication in Solid State Commu

    Transfer Matrix Formalism for Two-Dimensional Quantum Gravity and Fractal Structures of Space-time

    Full text link
    We develop a transfer matrix formalism for two-dimensional pure gravity. By taking the continuum limit, we obtain a "Hamiltonian formalism'' in which the geodesic distance plays the role of time. Applying this formalism, we obtain a universal function which describes the fractal structures of two dimensional quantum gravity in the continuum limit.Comment: 13 pages, 5 figures, phyzz

    Staggered Fermion, its Symmetry and Ichimatsu-Patterned Lattice

    Full text link
    We investigate exact symmetries of a staggered fermion in D dimensions. The Dirac operator is reformulated by SO(2D) Clifford algebra. The chiral symmetry, rotational invariance and parity symmetries are clarified in any dimension. Local scalar and pseudo-scalar modes are definitely determined, in which we find non-standard modes. The relation to Ichimatsu-patterned lattice approach is discussed.Comment: 3 pages, 1 figure, "Talk at Lattice2004(theory), Fermilab, June 21-26, 2004

    Incommensurate Mott Insulator in One-Dimensional Electron Systems close to Quarter Filling

    Full text link
    A possibility of a metal-insulator transition in molecular conductors has been studied for systems composed of donor molecules and fully ionized anions with an incommensurate ratio close to 2:1 based on a one-dimensional extended Hubbard model, where the donor carriers are slightly deviated from quarter filling and under an incommensurate periodic potential from the anions. By use of the renormalization group method, interplay between commensurability energy on the donor lattice and that from the anion potential has been studied and it has been found that an "incommensurate Mott insulator" can be generated. This theoretical finding will explain the metal-insulator transition observed in (MDT-TS)(AuI2_2)0.441_{0.441}.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jpn. at December 24 200

    Precise calculation of a bond percolation transition and survival rates of nodes in a complex network

    Get PDF
    <p><b>(a) Cumulative distributions of the survival rate at the critical point (<i>f</i><sub>c</sub> = 0.994) of nodes belonging to the largest shell, <i>k</i><sub><i>s</i></sub> = 25, in the initial state. (b) Schematic figure of calculating the survival rate</b>. Each link is supposed to be removed with the same probability and we compare the sizes of separated clusters. The gray nodes belong to the largest cluster. <b>(c) Cumulative distribution of link numbers at the critical point in a log-log plot</b>. The solid line is calculated only in the largest cluster, and a superposition of 100 trials. The dotted line is calculated for all clusters, and we take superposition of 10 trials. The guide line shows the slope of 1.5, the same slope as <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0119979#pone.0119979.g001" target="_blank">Fig 1(a)</a>.</p
    • …
    corecore