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Abstract
Through precise numerical analysis, we reveal a new type of universal loopless percolation

transition in randomly removed complex networks. As an example of a real-world network,

we apply our analysis to a business relation network consisting of approximately 3,000,000

links among 300,000 firms and observe the transition with critical exponents close to the

mean-field values taking into account the finite size effect. We focus on the largest cluster at

the critical point, and introduce survival probability as a new measure characterizing the ro-

bustness of each node. We also discuss the relation between survival probability and k-

shell decomposition.

Introduction
Percolation theory is a pillar of statistical physics that provides a basic understanding of transi-
tions by studying macroscopic connectivity in a system as its elements are randomly removed
[1]. As connectivity is a fundamental general property, we can apply percolation theory to a va-
riety of fields such as electrical conduction [2], fracture mechanics [3], flow of fluids in porous
materials [4], spread of epidemics [5], Internet traffic congestion [6], and the flow of sea ice
and blood [7, 8]. It is well-known that the critical point of a system, at which global connectivi-
ty is suddenly lost, depends on the details of the model of the system at hand. However, values
of critical exponents for models in Euclidean space are fairly uniform because they depend
only on spatial dimension [1, 9, 10].

Network models have recently garnered considerable attention from physicists because
these models are defined out of the Euclidean space and have led to many new insights [11–
13]. Network models consist of nodes and links, where links connect interacting pairs of nodes.
Such a framework is suitable for the description of various phenomena such as protein-protein
interaction [14], information flow among servers on the Internet [15], human relations based
on telephone communication [16], money flow among banks [17, 18], and transaction
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networks of businesses [13, 19, 20]. A feature common to these real-world networks is that
they are scale-free, i.e., their degree distribution follows a power law, at least asymptotically.
This feature implies that each of these networks is composed of several large nodes with thou-
sands of links, many intermediate nodes and a majority of very small nodes with few links [12].

The study of percolation processes in such complex networks is important given the fragility
of the systems being modeled [21–25]. It is well-known that scale-free networks lose connectiv-
ity at high density if nodes are removed in descending order of the degree, showing typical
transition behavior [21]. In random removal of nodes or links, however, scale-free networks
maintain connectivity, even at very low density, and no observations of a percolation transition
have been reported so far. In this study, through precise numerical calculation of a real world
example, we prove the existence of percolation transition in complex networks in random re-
moval of links when the network density is very low but non-zero.

In Section 2, we introduce data gathered from approximately 600,000 Japanese firms and
describe its basic statistical properties. We present a precise observation of percolation transi-
tion in networks in Section 3. Section 4 discusses finite size effect is discussed for the clipped
networks. Section 5 reveals a structural change of network. We show finite size scaling around
the transition in Section 6. Section 7 discusses percolation transition of Erdös-Rényi graph. In
Section 8, we propose an index to measure the robustness of nodes and their survival probabili-
ty, and compare it with k-shell decomposition. Finally, we discuss our findings and conclude in
Section 9.

Business relation network
Network data for our project is provided by TEIKOKU DATABANK, Ltd., a Japanese credit
research company in Tokyo. This data contains information about the direction of money flow
among businesses in Japan in 2011, defining the business relation network. From this network,
we select the largest strongly connected component (LSCC), where LSCC is the largest part of
the network in which every node is connected to every other node by at least one unidirectional
path [26]. Our LSCC network consists of 327,721 nodes, and we connect trading pairs directly
through undirected links for percolation analysis. The LSCC has 2,960,370 links, and the link
number distribution of this network is approximated by a power law for large link numbers
with a cumulative exponent of 1.5, as shown in Fig 1(a) and in Eq (1).

Fð� kÞ / k�1:5 ð1Þ
Here, F(� k) denotes the cumulative distribution function of link numbers k. Similar power
laws have been reported for business relation networks based on different data sources
[27–30]. Not only is this network scale-free, it also has a small-world characteristic that the
most likely distance between a pair of firms is 5 links; whereas, the longest pair distance is 21
links. In Fig 1(b), we plot the network structure for firms with more than 1,000 links.

Observation of percolation transition
We provide the numerical computation of percolation analysis as follows. For given network
clusters, we first categorize all links into bridge links and loop links. A bridge link is a link that,
if removed, divides a network cluster into two clusters or a cluster and an isolated node, which
is a cluster with link size 0 and node size 1. Loop links are links whose removal does not alter
the connectivity of the network. We randomly choose a link and remove it from the network. If
it is a bridge link, the network cluster is divided into two clusters, and we measure the sizes of
each according to the number of links in each. If the link removed is a loop link, the size of the
cluster is simply reduced by 1. After removal, we calculate the largest cluster size, the average
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cluster size and the cluster size distribution, which are the basic quantities in percolation theo-
ry. We repeatedly apply the process of categorization of bridges and loops, random link remov-
al and calculation of basic quantities to the LSCC network until all links have been removed.
This process constitutes one realization of our numerical simulation. We perform at most
10,000 realizations using different random number seeds for the calculation of averages and es-
timation of the survival rate.

The order parameter R is defined as the ratio of the link number of the largest cluster to that
of the original LSCC, and the control parameter f is defined as the ratio of the number of re-
moved links to the total number of links in the original LSCC. In Fig 2(a) the value of R is plot-
ted as a function of f. It appears that R decays linearly and moves toward 0 at f = 1. However,
by zooming into the range of f between 0.97 and 1.00, as shown in Fig 2(b), we find that the
order parameter R becomes approximately 0 at a non-trivial value of f, indicating the existence
of a percolation transition. To calculate the position of the transition, we determine the value
of f for which the second largest cluster becomes the largest by the removal of a link that divides
the largest cluster into two smaller clusters. This value of f is denoted by fc, and it is the critical
point. This method is similar to that of estimating the critical point by observing the ratio of
the size of the second largest cluster to the size of the largest cluster [31]. We repeat the simula-
tion 100 times with different random numbers and calculate the critical point as fc = 0.994.

The behavior of R around the critical point is plotted in log-log scale in the inset of Fig 2(b).
Eq (2) represents a power law decay of R at the transition point, and is confirmed for the criti-
cal exponent β = 1.0. We tested various candidate values for the critical point, and verified that
the value fc = 0.994 renders the plots straight in the widest range.

R / ðfc � f Þb ð2Þ

The next standard characterization of percolation transition is divergence of the average
cluster size, S, which is defined as hs2i/hsi, where s is the size of a cluster and h�i denotes the av-
erage over all clusters for all realizations. In the range of f above fc this divergence is confirmed
as shown in Fig 2(c), and the critical exponent γ, which is defined by Eq (3), is roughly

Fig 1. (a) Cumulative distribution F(� k) of link numbers in log-log plot. The guideline (solid line) shows the slope of a power law with the cumulative
exponent, 1.5. This distribution follows a power law on a large scale, F(� k)/ k−1.5. (b) Japanese business relation network for firms with more than
1,000 links. Hokkaido region (orange), Tohoku region (grey), Kanto region (including Tokyo) (green), Chubu region (including Nagoya) (red), Kansai region
(including Osaka) (purple), Chugoku region (pink), Shikoku region (skyblue), Kyushu-Okinawa region (yellow).

doi:10.1371/journal.pone.0119979.g001
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estimated to be 1.0 from the inset of Fig 2(c).

S / ðf � fcÞ�g ð3Þ

In the range of f below the critical point it is difficult to observe this divergence directly as
we have to remove the largest cluster for the calculation of S. Instead of the conventional aver-
age cluster size, we observe the average size of the second largest cluster in this range because
this quantity most clearly characterizes the tendency of divergence of fluctuation in cluster size
near the critical point as shown by the red triangles in Fig 2(c). We confirm that this character-
istic cluster size also shows divergence at the critical point just like ordinary percolation
transitions.

As a third method for the verification of percolation transition we observe the cumulative
distribution of cluster size P(� s) in log-log scale as shown in Fig 2(d). We define the cumula-
tive cluster size distribution as follows:

Pð� sÞ ¼
Xsm

s0¼s

Pðs0Þ ð4Þ

Fig 2. (a) Order parameterR in the whole range of f. (b) Order parameterR in the range of f between 0.97 and 1.00. Circles and squares specify values
below and above the critical point, respectively. (Inset) Log-log plots of R vs. f0−f. f0 < fc (circles), f0 = fc (triangles), and f0 > fc (squares). The grey guideline
shows the power law with critical exponent β = 1.0. Error bars estimated by the interquartile range (IQR) from 100 trials using different random number seeds
are plotted (all error bars are within the size of plotted squares.). (c) Normalized second largest cluster size T below the critical point (circles), and the
average cluster size S above the critical point (squares). (Inset) Average cluster size S and f−fc in log-log scale. The grey guideline shows the slope for
the critical exponent γ = 1.0. (d) Cumulative cluster size distributions in log-log scale. The dot-dash, bold and dash lines show values below, at, and
above the critical point, respectively. The guideline shows a slope of 1.5, corresponding to the critical exponent τ = 2.5. The results are a superposition of
10 trials.

doi:10.1371/journal.pone.0119979.g002
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where P(s) is the probability density function (PDF) and sm denotes the largest cluster size. The
distribution decays quickly above the critical point, f> fc, obeys a power law at the critical
point f = fc, and has a huge cluster below the critical point, f< fc, as shown by the hill of the cu-
mulative distribution. The slope of the guideline in Fig 2(d) shows the power exponent value of
1.5 and critical exponent value τ, which is defined as in Eq (5), and is calculated to be 2.5.

PðsÞ / s�t ð5Þ
In sum, the obtained values of critical exponents β = 1.0, γ = 1.0 and τ = 2.5 fulfill the scaling re-
lationship described in Eq (6) below, and fit well with the values of the mean-field critical expo-
nents, which are exact for a Bethe lattice with no loop or for Euclidean space with spatial
dimension higher than 6 [32].

t� 2 ¼ b
bþ g

ð6Þ

Finite size effect
Next, we consider finite size dependence. For this purpose we prepare some regional parts of
various sizes of business firm networks as we did in the case of Fig 1(a). We apply the same per-
colation analysis for these clipped networks.

In Fig 3(a), cumulative link number distributions are plotted for two regional parts of the
whole network extracted by using the information regarding the location of the firms, Osaka
prefecture (30,766 firms and 138,425 links), and Miyagi prefecture (4,686 firms and 15,443
links). Comparing with the distribution for the whole country, we find that the distributions
shift depending on the system size, following the same power law implying that the business re-
lation network has a scale-free property for link numbers larger than 10.

In order to observe the finite size effect more accurately we focus on the number of nodes N
and the link numberM at f = 0, the initial networks with no random removal. In Fig 3(b),M is

Fig 3. (a) Cumulative distributions of link numbers in a log-log plot. Nationwide (black solid line), Osaka
prefecture (magenta dotted line), and Miyagi prefecture (purple dot-dash line). The guideline (grey thin line)
shows the slope for a power law with the cumulative exponent, 1.5. (b) Initial number of linksM and the
number of nodesN for seven networks of different sizes in a log-log plot. The slope of the guideline
shows the power exponent ϕ = 1.3. Nationwide (black), Kanto region (green), Tokyo prefecture (orange),
Osaka prefecture (magenta), Fukuoka prefecture (brown), Miyagi prefecture (purple), and Kagoshima
prefecture (cyan).

doi:10.1371/journal.pone.0119979.g003
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plotted against N in a log-log scale, a non-trivial scaling law,M/ Nϕ is confirmed with the
power exponent ϕ about 1.3. It is trivial that the value of ϕ is 1.0 for Euclidean lattices, and in
artificial scale-free networks following the power law link number distribution in the whole
range, this exponent ϕ is 1.0 theoretically, if the exponent of the cumulative link number distri-
bution is larger than 1. As the mean link number is given by 2M/N, the exponent ϕ> 1 implies
that the mean link number diverges for a large system size limit. In a real business firm net-
work, this effect is realized by the shift of power law of the link number distribution, as seen in
Fig 3(a), implying that the geographically long range direct interaction among business firms
in different regions is non-negligible.

In Fig 4(a) and 4(b), we show the order parameters and the cumulative cluster size distribu-
tions at the critical point for two smaller size networks plotted with the case for the whole sys-
tem. In both cases, the transition behaviors are less clear for smaller systems; however, we can
confirm that the critical exponents are independent of the system size.

Structural change of network
The mean-field approximation of percolation theory is based on the assumption of the loopless
tree structure, and its applicability is directly checked numerically. Parts of typical network
configurations are shown in Fig 5(a), 5(b) and 5(c) for cases where f< fc, f = fc and f> fc, re-
spectively. We see in these figures that a large number of loop links, drawn in red, are below
the transition point, and that all links above the critical point are bridge links. In Fig 5(d), we
plot the ratio of the number of bridge links Rb to that of loop links Rl = 1−Rb as a function of f
for the original LSCC. For very small values of f, almost all links are loop links, and Rl decreases
gradually before rapidly decaying to 0 for values of f close to 1. In order to observe the behavior
of the system around f = 1 in detail, we calculate the probability PL that the largest cluster has
at least one loop by repeating the simulation 100 times, as shown in Fig 5(e). We show that this
probability abruptly decreases to 0 around the transition point, i.e., the percolation transition
point is also the loop-less transition point. Around the critical point, the contribution of loops
is very small. Therefore, the mean-field approximation becomes exact such that the critical ex-
ponents belong to the mean-field university class.

Fig 4. (a) Order parameterR for three networks: Nationwide (black solid line), Osaka pre-fecture (magenta dashed line), and Kagoshima
prefecture (cyan chain line). The arrows indicate the corresponding critical points. (b) Cumulative cluster size distributions at the critical points in a
log-log scale for the three cases shown in (a).

doi:10.1371/journal.pone.0119979.g004
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We also confirm size dependency of this structural change. We plot the probability that the
largest cluster has at least a loop for the three cases in Fig 6. The loops disappear around each
transition point, independent of network size.

Finite size scaling
We introduce three more scaling relations for characterization of the critical point in the initial
size of the clipped networks,M. In Fig 7(a) we observe Rc, the value of the order parameter at
the critical point, which is given by the largest cluster’s link number divided by the initial link
numbers,M. From this log-log plot we find that the scaling relation, Rc /M−δ, holds for δ =
0.50. In Fig 7(b), the number of clusters at the critical point for each clipped network is plotted
as a function ofM, and we confirm another power law, Ns /Mρ, where ρ is approximately
0.77. In Fig 7(c), the scaling relation for the critical link density, 1−fc /M−�, holds for � about
0.23. This relation demonstrates that the critical link density converges to 0 in the large system
limit; therefore, we may call this the sparse graph limit transition.

We now theoretically derive the relation among scaling exponents. Let n, nm, and Q(n) de-
note the node size of a cluster, largest cluster’s node size and node size PDF of clusters, respec-
tively. Considering the probability of existence of the largest cluster when there are totally Ns

clusters, we expect the following relation to hold:

X1

n¼nm

QðnÞ � 1

Ns
ð7Þ

Fig 5. Examples of typical clusters; (a) f < fc, (b) f = fc and (c) f > fc. Bridge links and loop links are shown in blue and red, respectively. (d) Ratio of
bridge links (blue line) and loop links (broken red line) in the largest cluster. (e) Probability that the largest cluster has a loop. The broken black line
shows the critical point. Results are estimated for 100 trials.

doi:10.1371/journal.pone.0119979.g005
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Fig 6. Size dependence of the probability that the largest cluster has a loop for the three cases shown
in Fig 4. The dotted lines indicate the corresponding critical points.

doi:10.1371/journal.pone.0119979.g006

Fig 7. (a) Normalized size of the largest clusterRc at the critical point for each network shown in Fig 3(b). The line shows the slope for Rc/M−δ, δ =
0.50. Colors are the same as in Fig 3(b). (b) Number of clusters at the critical point for each network shown in Fig 3(b). The line shows the slope for Ns

/Mρ, ρ = 0.77. (c) Critical link density as a function of M for each network shown in Fig 3(b). The line shows the slope for 1−fc /M−ε, ε = 0.23. The
number of trials ranges from 1,000 to 100,000, depending on convergence speed for each network. The error bars indicate the interquartile range (IQR). (d)
Critical link density on Erdös-Rényi graph (ER-graph), ϕ = 1.5 (triangles), ϕ = 1.7 (squares), and ϕ = 2.0 (circles). The number of trials ranges from
1,000 to 100,000, depending on convergence speed for each network.

doi:10.1371/journal.pone.0119979.g007
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By the conservation of node numbers we also require the following general relation:

Ns

Xnm

n¼1

nQðnÞ � N ð8Þ

At the critical point we can assume that the numbers of nodes and links are nearly equal, n� s,
as the clusters are almost loop-less; therefore, Q(n) is replaced by the power law, P(s)/ s−τ.
Then, approximating the summation by integral, we obtain the scaling laws, st�1

m / N and Ns

/ N from Eqs (7) and (8), respectively. As Rc is defined by sm/M andM/ Nϕ, also 1−fc = (N
−Ns)/M, we have the following relations for δ, ρ, and �, defined by Rc /M−δ, Ns /Mρ, and 1−fc
/M−�

d ¼ 1� 1

fðt� 1Þ ; r ¼ 1

f
; � ¼ 1� 1

f
ð9Þ

These relations are confirmed by introducing the observed values for τ and ϕ, δ = 0.49(0.50), ρ
= 0.77(0.77) and � = 0.23(0.23), where the numbers in parentheses show the directly
observed values.

Erdös-Rényi graph
We can also observe the sparse graph limit transition in a complete graph in which all nodes
are directly connected. Let the number of nodes be N, then the initial link numberM is given
as N(N−1)/2, and hence, the exponent ϕ is 2. It is known that the percolation transition occurs
and the critical value is characterized by 1−fc = 1/N, namely, 1−fc /M−� with � = 1/2, which is
consistent with the last equation of Eq (9) [33, 34]. The critical exponents for the complete
graph take the same mean field values.

To confirm the previously described scaling relation with a theoretical model, we introduce
percolation simulations for Erdös-Rényi graphs (ER-graphs). First, we prepare a set of ER-
graphs that follow the relation,M/ Nϕ. For a given node number N, we choose links randomly
with the link density 2M/(N(N−1)), and create three series of ER-graphs, (N,M) = (200, 956),
(2048, 32558), (20000, 1001507) for ϕ = 1.5, (N,M) = (116, 932), (860, 30039), (6761, 1001454)
for ϕ = 1.7, (N,M) = (45, 990), (245, 29890), (1415, 1000405) for ϕ = 2.0. Here, ER-graphs with
ϕ = 2.0 are complete networks. We regard these nine model networks as the initial networks,
and we remove links randomly to estimate the critical points using our method of searching
the point where the largest cluster size becomes roughly equivalent to the second largest cluster
size. The number of trials for removal ranges from 1,000 to 100,000 times, depending on net-
work size and corresponding to the precision of the real data simulation, as shown in Fig 7(c).
In Fig 7(d), we confirm that the simulation and our theory are in good agreement for these
three series, ϕ = 1.5,1.7, and 2.0.

In the previously described simulation, we regard the ER-graphs as the initial states (f = 0),
in which the link density, p, is given by 2M/(N(N−1)), as schematically shown in Fig 8. In the
theory of ER-graphs, the critical point of percolation phase transition is given by pc = 1/N [33],
and the relation between f and p is as follows:

p ¼ 1�
NðN � 1Þ

2
�M þm

NðN � 1Þ
2

¼ 2Mð1� f Þ
NðN � 1Þ ð10Þ

where N(N−1)/2−M is the difference of link numbers between the complete graph and initial
ER-graph with M links,m is the number of links removed from the initial state (f = 0), and f =

Percolation Transition and Survival Rates in a Complex Network
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m/M. As the critical point of the ER-graph is given by pc = 1/N, we have the following relation:

1� fc ¼
N � 1

2M
ð11Þ

Under our finite size scaling assumption,M/ Nϕ, we obtain the following equation:

1� fc / M�1þ1=f ð12Þ

This equation is consistent with Eq (9). Therefore, we understand that the scaling relations, Eq
(9), is a natural generalization of the percolation theory of ER-graphs to more general
complex networks.

We expect that the sparse graph limit transition is a general property which is applicable to
any complex networks that follow finite size scaling,M/ Nϕ with ϕ> 1, as the mean link
number per node at the critical point is 1 and the link density at the critical point vanishes in
the limit of N!1. Also, the fact that the critical cluster becomes a loop-less tree is expected
to be a general property that makes the critical exponents given by the mean-field values.

Survival rates of nodes
In this section, we calculate the survival rate, Ps, of each node as a function of f by repeating
multiple trials using different random numbers. We define the survival rate as the ratio of the
number of trials, where the node belongs to the largest cluster, to the total number of trials. We
perform 10,000 trials and calculate the survival rate function for each node. Fig 9 shows the dis-
tributions of survival rates for three values of f, i.e., f = 0.950 (below fc), f = 0.994 (at the critical
point fc) and f = 0.9999 (above fc). Below the critical point (the broken red line), there are many
nodes whose survival rates are very close to 1, and thus, we cannot characterize the differences
among these nodes. Above the critical point (the broken blue line), many nodes (more than
90% of the total number of nodes) record survival rates less than the observation limit (10−4).
At the critical point, the survival rates are most widely distributed, implying that the survival
rate at the critical point can be a new measure of the robustness of nodes against
random attacks.

Fig 8. Schematic figures of the percolation process of a complete graph. In our simulation, an initial state (f = 0) is chosen as an ER-graph with a link
density p between p = pc and 1, and we consider removal process of links toward p = 0(f = 1).

doi:10.1371/journal.pone.0119979.g008
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For a more detailed characterization of the structure of this business transaction network,
we apply k-shell decomposition analysis [35] to the network to calculate the number of shells
in the network and number of nodes in each shell. We define a k-shell as the set of nodes be-
longing to the k-core but not to the (k+1)-core, where k-core is defined by the maximal sub-
graph having a minimal link number k. This decomposition characterizes the importance of
nodes in a complex network structure. As a result, we find that the business relation network is
decomposed into 25 shells. We assign an integer index ks to each node that represents the shell
number to which the node belongs. As shown in Fig 10(a), the distribution of shell numbers is
maximum at ks = 7, and there are 1,346 nodes with the largest index ks = 25. The number of
nodes at the periphery (ks = 1) is very small because we extracted the LSCC from raw
network data.

We count the number of nodes, for each shell, that were never part of the largest cluster at
the critical point in the 10,000 trials, and calculate the ratio R0 by dividing it by the total num-
ber of nodes in the shell. Fig 10(b) shows that this value is large for small shell numbers. We
note that the ratio R0 decreases for all shells when the number of trials is increased to lower the
observation limit.

We observe the relation between survival rates at the critical point and k-shell indices, ex-
cluding small number shells to ignore the observation limit. Fig 10(c) represents the median of
Ps(fc) calculated for each shell. It is natural that the median survival rate increases for larger
shell indices. We empirically obtain an exponential relationship described by the following
equation, excluding the largest shell index, k = 25,

PsðfcÞ ¼ A exp ðBksÞ ð13Þ

where A = 1.7×10−4 and B = 0.16. This result indicates that the survival rate increases exp(B) =
1.17 times per shell index increment.

Fig 9. Cumulative distributions of the survival rates. The red, green and blue lines represent values
below (f = 0.950), at (f = 0.994), and above (f = 0.9999) the critical point, respectively. The values of survival
rates are distributed most widely at the critical point.

doi:10.1371/journal.pone.0119979.g009
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We can explain the non-trivial relation between the shell and survival rate in the following
manner. We assume that the survival rate of a node i, Ps, i, is simply written as the fraction of
removed links f, as follows:

Ps;i ¼ 1� f ki ð14Þ

where ki is the number of links that contribute to the connectivity of the largest cluster. Eq (14)
can be approximated as Eq (15) below because the value 1−f is very small at the critical point
(fc = 0.994). We take the average of Ps, i for each shell.

Ps;i ’ ki ð1� f Þ ð15Þ

Ps ’ hkis ð1� f Þ ð16Þ

Here, h�is denotes the average survival rate of nodes in each shell and s is the index of the shell.

Fig 10. (a) PDF of nodes belonging to the ks-th shell. The total number of shells is 25 and the most populated shell is ks = 7. (b) Ratio of the number of
nodes for each shell that did not survive the 10,000 trials. (c) Median of the survival rate for each shell for ranging from ks � 9. Error bars are plotted
using quartile deviation. The guideline shows Ps / exp(Bks) where B = 0.16. (d) Schematic figure of the degree of decomposition in k-shell
decomposition analysis. Each plate shows the shell (ks = 1 (blue); 2 (green); 3 (pink)). Focusing on the white node, the red links are oriented towards a
higher shell, and their number is denoted by ku. The green links are oriented in the same shell, and their number is km. The blue links are oriented to a lower
shell, and their number is kd.

doi:10.1371/journal.pone.0119979.g010
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Accordingly, we determine the slope of Fig 10(c) by the following equation:

B � 1

smax � smin

Xsmax�1

smin

log
hkisþ1

hkis
¼ 1

smax � smin

log
hkismax

hkismin

ð17Þ

We then evaluate ki , which are links whose removal causes the connectivity of the largest
cluster to decrease. We introduce a new decomposition of link number, k, of a node into the
following three numbers:

k ¼ ku þ km þ kd ð18Þ

where ku is the number of links connected to an upper shell, km is the number of links linked to
the same shell, and kd is the number of links that connect the node to lower numbered shells,

as schematically shown in Fig 10(d). We believe that ku+km is ki because it is likely that a con-
nection to lower numbered shells will not increase the probability of membership in the largest
cluster as the largest cluster is generally composed of nodes with higher shell indices.

ki ¼ ku þ km ð19Þ

From the network data we can calculate the mean value for each shell, hkis, by the following
equation:

hkis ¼ hku þ kmis ð20Þ

Using the results obtained from Eq (17), we obtain B* 0.160, which agrees very well with the
empirical slope of Fig 10(c).

Note that the median survival rate for the shell with the highest index does not fit well with
Eq (13). We consider this discrepancy to be caused by the fact that ku in the shell with highest
index is 0 in Eq (18), and it is likely that the shell has a hierarchical structure that includes
deeper cores of nodes with larger survival rates. This situation implies that the survival rate at
the critical point can be a new quantitative characterization of the importance of a node, which
is roughly proportional to the shell index but can differ among nodes in the same shell index.

Fig 11(a) shows the distribution of the survival rate of nodes belonging to the 25-shell. This
figure suggests that the survival rate of the nodes in this highest shell has wide diversity. In
order to understand this diversity, for comparison, we theoretically calculate the survival rate
for a Cayley tree, which is a regular tree network with link number K for all nodes, a typical the-
oretical model of a loopless network. We remove a link as schematically shown in Fig 11(b)
and calculate the probability of a node belongings to the largest cluster. Although we will not
derive it here, we can show that the survival rate distribution for a Cayley tree of the total link
numberM is given as, f(Ps) = (k(k−1)/(M+1))exp(−MPs+M−1), an exponential distribution,
which is much less diverse than the real survival rate distribution. As discussed in Section 5,
the critical clusters, as with those of a Caley tree, are almost loopless; the difference in the sur-
vival rate distribution may be caused by the non-uniformity of the link numbers. We can di-
rectly observe non-uniformity of link numbers of nodes in the critical clusters as shown in Fig
11(c). We can confirm that the slope of the distribution is smaller for the critical clusters than
for the original network shown in Fig 1(a), implying that the link number distribution is highly
non-uniform; this result may be a cause for the wide diversity in the survival rate.

The node with the largest survival rate has 6,449 links, which is the second highest in the
link number ranking. The node with the largest number of links, however, is 36 th in the sur-
vival rate ranking. This result shows that the link number is not proportional to the survival
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rate. The survival rate of a node at criticality can provide new information about the impor-
tance of the node.

Based on survival rate ranking, we select the top 100 firms and observe their job categories.
The top job category is manufacturing that captures 48% share while it is 25% in the original
network, and the second category is construction that captures 28% share while it is 21% in the
original network. These results suggest that manufacturing and construction businesses play a
more important role in the business network than other industries. This method statistically
shows robust job categories.

Conclusion
In this paper, we analyzed the link-removal percolation transition of a complex business rela-
tion network through precise numerical calculation, and concluded that the critical exponents
are given by mean-field values. This result occurs because a number of loop links vanish at the
same critical point, and the mean-field approximation becomes exact. We also discussed the fi-
nite size dependency of this property, and confirmed the agreement between observation and
theory. For ER-graphs, we showed that the finite size scaling relations are consistent with the
ER-graph percolation theory based on the mean link number per node being 1 at the critical

Fig 11. (a) Cumulative distributions of the survival rate at the critical point (fc = 0.994) of nodes
belonging to the largest shell, ks = 25, in the initial state. (b) Schematic figure of calculating the
survival rate. Each link is supposed to be removed with the same probability and we compare the sizes of
separated clusters. The gray nodes belong to the largest cluster. (c) Cumulative distribution of link
numbers at the critical point in a log-log plot. The solid line is calculated only in the largest cluster, and a
superposition of 100 trials. The dotted line is calculated for all clusters, and we take superposition of 10 trials.
The guide line shows the slope of 1.5, the same slope as Fig 1(a).

doi:10.1371/journal.pone.0119979.g011
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point. We argued that this type of sparse graph limit transition is observable in general complex
networks whose mean link number per node tends to diverge.

Note that the above discussion is applied for networks with ϕ> 1. In the case of ϕ = 1 such
as two dimensional regular lattices, the transition point can take a value between 0 and 1 in the
infinite scale limit. If we modify the condition of random removal to some designed ways of re-
moval such as targeted attacks for links connecting with higher degree nodes, there is a possi-
bility of realizing percolation transition with a non-trivial transition point, fc, even in the case
of ϕ> 1.

We introduced the survival rate as a new index characterizing the robustness of nodes, and
showed that this value is closely related to the index of k-shell decomposition analysis. In addi-
tion, we confirmed that the survival rates distribute widely for the same k-shell nodes; also,
their values are not simply proportional to the link numbers. Therefore, the survival rates esti-
mated at the percolation critical point can be an independent measure for nodes, representing
robustness for random failure of a complex network. Using real-world data, we found that
businesses categorized in construction and manufacturing tend to have larger survival rates in
a network than other job categories.
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