95 research outputs found

    Exome sequencing reveals a novel TTC19 mutation in an autosomal recessive spinocerebellar ataxia patient

    Get PDF
    BACKGROUND: Spinocerebellar ataxias (SCAs) are heterogeneous diseases characterized by progressive cerebellar ataxia associated with dysarthria, oculomotor abnormalities, and mental impairment. To identify the causative gene, we performed exome sequencing on a Japanese patient clinically diagnosed with recessive SCA. METHOD: The patient is a 37-year-old Japanese woman with consanguineous parents. The head magnetic resonance imaging (MRI) showed cerebellar atrophy and T1 low/T2 high intensity at the bilateral inferior olives. Single-nucleotide polymorphism (SNP) genotyping and next-generation sequencing were performed, and the variants obtained were filtered and prioritized. RESULTS: After these manipulations, we identified a homozygous nonsense mutation of the TTC19 gene (p.Q277*). TTC19 has been reported to be a causative gene of a neurodegenerative disease in Italian and Portuguese families and to be involved in the pathogenesis of mitochondrial respiratory chain complex III (cIII) deficiency. This report is the first description of a TTC19 mutation in an Asian population. Clinical symptoms and neuroimaging are consistent with previous reports. The head MRI already showed abnormal features four years before her blood lactate and pyruvate levels were elevated. CONCLUSIONS: We should consider the genetic analysis of TTC19 when we observe such characteristic MRI abnormalities. Genes associated with mitochondrial function cause many types of SCAs; the mutation we identified should help to elucidate the pathology of these disorders

    Evaluation of the Luciferase Assay-Based In Vitro Elicitation Test for Serum IgE

    Get PDF
    ABSTRACTBackgroundAn in vitro elicitation test employing human high-affinity IgE receptor-expressing rat mast cell lines appears to be a useful method for measuring mast cell activation using a patient's IgE and an allergen; however, such cell lines are sensitive to human complements in the serum. We have recently developed a new luciferase-reporting mast cell line (RS-ATL8) to detect IgE crosslinking-induced luciferase expression (EXiLE) with relatively low quantities of serum IgE.MethodsA total of 30 patients suspected of having egg white (EW) allergy were subjected to an oral food challenge (OFC) test; then, the performances of EW-specific serum IgE (CAP-FEIA), EW-induced degranulation, and EXiLE responses in RS-ATL8 cells were compared using receiver-operating characteristic (ROC) curve analysis. The patients' sera were diluted to 1:100, which causes no cytotoxicity when sensitizing the RS-ATL8 cells for the degranulation and EXiLE tests.ResultsThe area under the ROC curves was highest in the EXiLE test (0.977), followed by CAP-FEIA (0.926) and degranulation (0.810). At an optimal cutoff range (1.648-1.876) calculated from the ROC curve of the EXiLE test, sensitivity and specificity were 0.944 and 0.917, respectively. A 95% positive predictive value was given at a cutoff level of 2.054 (fold increase in luciferase expression) by logistic regression analysis. Conclusions: In contrast to in vivo tests, the EXiLE test appears to be a useful tool in diagnosing patients suspected of having IgE-dependent EW allergy without the risk of severe systemic reactions

    A Highly Photostable Near-Infrared Labeling Agent Based on a Phospha-rhodamine for Long-Term and Deep Imaging

    Get PDF
    AbstractVarious fluorescence microscopy techniques require bright NIR‐emitting fluorophores with high chemical and photostability. Now, the significant performance improvement of phosphorus‐substituted rhodamine dyes (PORs) upon substitution at the 9‐position with a 2,6‐dimethoxyphenyl group is reported. The thus obtained dye PREX 710 was used to stain mitochondria in living cells, which allowed long‐term and three‐color imaging in the vis‐NIR range. Moreover, the high fluorescence longevity of PREX 710 allows tracking a dye‐labeled biomolecule by single‐molecule microscopy under physiological conditions. Deep imaging of blood vessels in mice brain has also been achieved using the bright NIR‐emitting PREX 710‐dextran conjugate

    Prediction Model of Amyotrophic Lateral Sclerosis by Deep Learning with Patient Induced Pluripotent Stem Cells

    Get PDF
    Deep LearningとALS iPS細胞を用いた疾患予測テクノロジー --人工知能のALS検知・診断への応用--. 京都大学プレスリリース. 2021-02-24.Deep learning amyotrophic lateral sclerosis by taking pictures. 京都大学プレスリリース. 2021-02-24.In amyotrophic lateral sclerosis (ALS), early diagnosis is essential for both current and potential treatments. To find a supportive approach for the diagnosis, we constructed an artificial intelligence‐based prediction model of ALS using induced pluripotent stem cells (iPSCs). Images of spinal motor neurons derived from healthy control subject and ALS patient iPSCs were analyzed by a convolutional neural network, and the algorithm achieved an area under the curve of 0.97 for classifying healthy control and ALS. This prediction model by deep learning algorithm with iPSC technology could support the diagnosis and may provide proactive treatment of ALS through future prospective research. ANN NEUROL 202

    Genetic screening for malignant hyperthermia and comparison of clinical symptoms in Japan

    Get PDF
    Malignant hyperthermia (MH) is an anaesthetic complication that causes an abnormal hypermetabolic state. RYR1 encoding ryanodine receptors of the sarcoplasmic reticulum and CACNA1S encoding α subunits of dihydropyridine receptors are known to be associated with MH pathogenicity. We performed genetic screening using next-generation sequencing to evaluate the prevalence of genes associated with MH pathogenicity and clinical symptoms. This was a retrospective cohort study wherein next-generation sequencing data of 77 families diagnosed with MH predisposition by calcium-induced calcium release (CICR) tests from 1995 to 2019 was used to search for RYR1 and CACNA1S variants. Furthermore, the clinical symptoms and predisposition tests in participants with RYR1 and CACNA1S variants were compared. In the 77 families, 44.2%, 7.8%, and 48.1% individuals had RYR1, CACNA1S, and neither RYR1 nor CACNA1S variants, respectively. Clinically significant differences were found in the maximum body temperature, maximum elevated body temperature for 15 min, creatinine kinase level, and CICR rate between the RYR1 and CACNA1S groups. The prevalence of pathogenic CACNA1S variants appears to be prominent in Japan. The severity of clinical symptoms and the CICR rate were greater in individuals with RYR1 variants than in those with CACNA1S variants, likely due to more direct regulation of calcium levels by ryanodine receptors than by dihydropyridine receptors. Genetic analysis of MH in future studies may help identify other genes associated with MH, which will further clarify the relationship between genotypes and MH symptoms and contribute to safer anaesthesia practice.This study was supported by a Grant-in-Aid for Young Scientists (grant number: 17K16733 to Y.N. and 20K17783 to R.K.) from the Japan Society for the Promotion of Science and by the Takeda Science Foundation (H.K.)

    Deep Learning and ALS

    Get PDF
    In amyotrophic lateral sclerosis (ALS), early diagnosis is essential for both current and potential treatments. To find a supportive approach for the diagnosis, we constructed an artificial intelligence-based prediction model of ALS using induced pluripotent stem cells (iPSCs). Images of spinal motor neurons derived from healthy control subject and ALS patient iPSCs were analyzed by a convolutional neural network, and the algorithm achieved an area under the curve of 0.97 for classifying healthy control and ALS. This prediction model by deep learning algorithm with iPSC technology could support the diagnosis and may provide proactive treatment of ALS through future prospective research

    A Transient Rise in Free Mg 2+ Ions Released from ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation

    Get PDF
    細胞分裂期の染色体凝縮はマグネシウムイオンの増加によって起こる --生細胞イメージングにより新たなメカニズムを検証--. 京都大学プレスリリース. 2018-01-19.For cell division, negatively charged chromatin, in which nucleosome fibers (10 nm fibers) are irregularly folded [ 1–5 ], must be condensed into chromosomes and segregated. While condensin and other proteins are critical for organizing chromatin into the appropriate chromosome shape [ 6–17 ], free divalent cations such as Mg2+ and Ca2+, which condense chromatin or chromosomes in vitro [ 18–28 ], have long been considered important, especially for local condensation, because the nucleosome fiber has a net negative charge and is by itself stretched like “beads on a string” by electrostatic repulsion. For further folding, other positively charged factors are required to decrease the charge and repulsion [ 29 ]. However, technical limitations to measure intracellular free divalent cations, but not total cations [ 30 ], especially Mg2+, have prevented us from elucidating their function. Here, we developed a Förster resonance energy transfer (FRET)-based Mg2+ indicator that monitors free Mg2+ dynamics throughout the cell cycle. By combining this indicator with Ca2+ [ 31 ] and adenosine triphosphate (ATP) [ 32 ] indicators, we demonstrate that the levels of free Mg2+, but not Ca2+, increase during mitosis. The Mg2+ increase is coupled with a decrease in ATP, which is normally bound to Mg2+ in the cell [ 33 ]. ATP inhibited Mg2+-dependent chromatin condensation in vitro. Chelating Mg2+ induced mitotic cell arrest and chromosome decondensation, while ATP reduction had the opposite effect. Our results suggest that ATP-bound Mg2+ is released by ATP hydrolysis and contributes to mitotic chromosome condensation with increased rigidity, suggesting a novel regulatory mechanism for higher-order chromatin organization by the intracellular Mg2+-ATP balance

    Co-morbidity of progressive supranuclear palsy and amyotrophic lateral sclerosis : a clinical-pathological case report

    Get PDF
    Background: The coexistence of distinct neurodegenerative diseases in single cases has recently attracted greater attention. The phenotypic co-occurrence of progressive supranuclear palsy (PSP) and amyotrophic lateral sclerosis (ALS) has been documented in several cases. That said, the clinicopathological comorbidity of these two diseases has not been demonstrated. Case presentation: A 77-year-old man presented with gait disturbance for 2 years, consistent with PSP with progressive gait freezing. At 79 years old, he developed muscle weakness compatible with ALS. The disease duration was 5 years after the onset of PSP and 5months after the onset of ALS. Neuropathological findings demonstrated the coexistence of PSP and ALS. Immunohistochemical examination confirmed 4-repeat tauopathy, including globose-type neurofibrillary tangles, tufted astrocytes, and oligodendroglial coiled bodies as well as TAR DNA-binding protein 43 kDa pathology in association with upper and lower motor neuron degeneration. Immunoblotting showed hyperphosphorylated full-length 4-repeat tau bands (64 and 68 kDa) and C-terminal fragments (33 kDa), supporting the diagnosis of PSP and excluding other parkinsonian disorders, such as corticobasal degeneration. Genetic studies showed no abnormalities in genes currently known to be related to ALS or PSP. Conclusions: Our case demonstrates the clinicopathological comorbidity of PSP and ALS in a sporadic patient. The possibility of multiple proteinopathies should be considered when distinct symptoms develop during the disease course

    Right Isomerism of the Brain in Inversus Viscerum Mutant Mice

    Get PDF
    Left-right (L-R) asymmetry is a fundamental feature of higher-order neural function. However, the molecular basis of brain asymmetry remains unclear. We recently reported L-R asymmetry of hippocampal circuitry caused by differential allocation of N-methyl-D-aspartate receptor (NMDAR) subunit GluRε2 (NR2B) in hippocampal synapses. Using electrophysiology and immunocytochemistry, here we analyzed the hippocampal circuitry of the inversus viscerum (iv) mouse that has a randomized laterality of internal organs. The iv mouse hippocampus lacks L-R asymmetry, it exhibits right isomerism in the synaptic distribution of the ε2 subunit, irrespective of the laterality of visceral organs. This independent right isomerism of the hippocampus is the first evidence that a distinct mechanism downstream of the iv mutation generates brain asymmetry
    corecore