144 research outputs found

    Near-threshold Lambda(1520) production by the gamma p -> K+Lambda(1520) reaction at forward K+ angles

    Full text link
    Differential cross sections and photon-beam asymmetries for the gamma p -> K+ Lambda(1520) reaction have been measured with linearly polarized photon beams at energies from the threshold to 2.4 GeV at 0.6<cos(theta)<1. A new bump structure was found at W=2.11 GeV in the cross sections. The bump is not well reproduced by theoretical calculations introducing a nucleon resonance with J<=3/2. This result suggests that the bump might be produced by a nucleon resonance possibly with J>=5/2 or by a new reaction process, for example an interference effect with the phi photoproduction having a similar bump structure in the cross sections.Comment: 5 pages, 4 figures, published in Phys. Rev. Let

    Measurement of the γpK+Λ\vec{\gamma} p \to K^+ \Lambda Reaction at Backward Angles

    Full text link
    Cross sections for the γpK+Λ\gamma p \to K^+ \Lambda have been measured at backward angles using linearly polarized photons in the range 1.50 to 2.37 GeV. In addition, the beam asymmetry for this reaction has been measured for the first time at backward angles. The Λ\Lambda was detected at forward angles in the LEPS spectrometer via its decay to pπp\pi^- and the K^+ was inferred using the technique of missing mass. These measurements, corresponding to kaons at far backward angles in the center-of-mass frame, complement similar CLAS data at other angles. Comparison with theoretical models shows that the reactions in these kinematics provide further opportunities to investigate the reaction mechanisms of hadron dynamics.Comment: 6 figures, submitted to PRC rapid communication

    Backward-angle photoproduction of π0\pi^0 mesons on the proton at EγE_\gamma = 1.5--2.4 GeV

    Full text link
    Differential cross sections and photon beam asymmetries for π0\pi^0 photoproduction have been measured at EγE_\gamma = 1.5--2.4 GeV and at the π0\pi^0 scattering angles, --1 << cosΘc.m.<\Theta_{c.m.} < --0.6. The energy-dependent slope of differential cross sections for uu-channel π0\pi^0 production has been determined. An enhancement at backward angles is found above EγE_\gamma = 2.0 GeV. This is inferred to be due to the uu-channel contribution and/or resonances. Photon beam asymmetries have been obtained for the first time at backward angles. A strong angular dependence has been found at Eγ>E_\gamma > 2.0 GeV, which may be due to the unknown high-mass resonances.Comment: 12 pages, 4 figures, submitted to PL

    Forward coherent ϕ\phi-meson photoproduction from deuterons near threshold

    Get PDF
    Differential cross sections and decay asymmetries for coherent ϕ\phi-meson photoproduction from deuterons were measured for the first time at forward angles using linearly polarized photons at EγE_{\gamma}= 1.5-2.4 GeV. This reaction offers a unique way to directly access natural-parity Pomeron dynamics and gluon exchange at low energies. The cross sections at zero degrees increase with increasing photon energy. The decay asymmetries demonstrate a complete dominance of natural-parity exchange processes, showing that isovector unnatural-parity π\pi-meson exchange is small. Nevertheless the deduced cross sections of ϕ\phi-mesons from nucleons contributed by isoscalar t-channel exchange processes are not well described by the conventional Pomeron model.Comment: 14 pages, 6 figures. Final published versio

    The gamma + p to K+ + Lambda and gamma + p to K+ + Sigma0 reactions at forward angles with photon energies from 1.5 to 2.4 GeV

    Full text link
    Differential cross sections and photon beam asymmetries for the gamma p rightarrow K+ Lambda and gamma p rightarrow K+ Sigma0 reactions have been measured in the photon energy range from 1.5 GeV to 2.4 GeV and in the angular range from Theta_{cm} = 0 to 60 of the K+ scattering angle in the center of mass system at the SPring-8/LEPS facility. The photon beam asymmetries for both the reactions have been found to be positive and to increase with the photon energy. The measured differential cross sections agree with the data measured by the CLAS collaboration at cosTheta_{cm}<0.9 within the experimental uncertainties, but the discrepancy with the SAPHIR data for the K+Lambda reaction is large at cosTheta_{cm}>0.9. In the K+Lambda reaction, the resonance-like structure found in the CLAS and SAPHIR data at W=1.96 GeV is confirmed. The differential cross sections at forward angles suggest a strong K-exchange contribution in the t-channel for the K+Lambda reaction, but not for the K+Sigma0 reaction.Comment: 13 pages, 18 figures, submitted to Physical Review

    Beam polarization asymmetries for the p(gamma,K+)Lambda and p(gamma,K+)Sigma0 reactions at Egamma=1.5-2.4 GeV

    Get PDF
    Beam polarization asymmetries for the p(gamma,K+)Lambda and p(gamma,K+)sigma0 reactions are measured for the first time for Egamma=1.5-2.4 GeV and 0.6<cos(theta_cm(K+))<1.0 by using linearly polarized photons at the Laser-Electron-Photon facility at SPring-8 (LEPS). The observed asymmetries are positive and gradually increase with rising photon energy. The data are not consistent with theoretical predictions based on tree-level effective Lagrangian approaches. Including the new results in the development of the models is, therefore, crucial for understanding the reaction mechanism and to test the presence of baryon resonances which are predicted in quark models but are sofar undiscovered

    Differential cross section and photon beam asymmetry for the gamma n -> K+ Sigma- reaction at Egamma=1.5-2.4 GeV

    Full text link
    Differential cross sections and photon beam asymmetries have been measured for the gamma n -> K+ Sigma- and gamma p -> K+ Sigma0 reactions separately using liquid deuterium and hydrogen targets with incident linearly polarized photon beams of Egamma=1.5-2.4 GeV at 0.6<cosTheta<1. The cross section ratio of sigma(K+Sigma-)/sigma(K+Sigma0), expected to be 2 on the basis of the isospin 1/2 exchange, is found to be close to 1. For the K+Sigma- reaction, large positive asymmetries are observed indicating the dominance of the K*-exchange. A large difference between the asymmetries for the K+Sigma- and K+Sigma0 reactions can not be explained by simple theoretical considerations.Comment: 5 pages, 3 figures, accepted by Phys. Rev. Let
    corecore