9,888 research outputs found

    Cabibbo Mixing in Superstring Derived Standard--like Models

    Full text link
    We examine the problem of generation mixing in realistic superstring derived standard--like models, constructed in the free fermionic formulation. We study the possible sources of family mixing in these models . In a specific model we estimate the Cabibbo angle. We argue that a Cabibbo angle of the correct order of magnitude can be obtained in these models.Comment: WIS--92/3/JAN--PH, 15 page

    Fractional S-branes on a Spacetime Orbifold

    Get PDF
    Unstable D-branes are central objects in string theory, and exist also in time-dependent backgrounds. In this paper we take first steps to studying brane decay in spacetime orbifolds. As a concrete model we focus on the R^{1,d}/Z_2 orbifold. We point out that on a spacetime orbifold there exist two kinds of S-branes, fractional S-branes in addition to the usual ones. We investigate their construction in the open string and closed string boundary state approach. As an application of these constructions, we consider a scenario where an unstable brane nucleates at the origin of time of a spacetime, its initial energy then converting into energy flux in the form of closed strings. The dual open string description allows for a well-defined description of this process even if it originates at a singular origin of the spacetime.Comment: 22 pages, 6 eps figure

    Tracking Control for FES-Cycling based on Force Direction Efficiency with Antagonistic Bi-Articular Muscles

    Full text link
    A functional electrical stimulation (FES)-based tracking controller is developed to enable cycling based on a strategy to yield force direction efficiency by exploiting antagonistic bi-articular muscles. Given the input redundancy naturally occurring among multiple muscle groups, the force direction at the pedal is explicitly determined as a means to improve the efficiency of cycling. A model of a stationary cycle and rider is developed as a closed-chain mechanism. A strategy is then developed to switch between muscle groups for improved efficiency based on the force direction of each muscle group. Stability of the developed controller is analyzed through Lyapunov-based methods.Comment: 8 pages, 4 figures, submitted to ACC201

    The Boundary Conformal Field Theories of the 2D Ising critical points

    Full text link
    We present a new method to identify the Boundary Conformal Field Theories (BCFTs) describing the critical points of the Ising model on the strip. It consists in measuring the low-lying excitation energies spectra of its quantum spin chain for different boundary conditions and then to compare them with those of the different boundary conformal field theories of the (A2,A3)(A_2,A_3) minimal model.Comment: 7 pages, no figures. Talk given at the XXth International Conference on Integrable Systems and Quantum Symmetries (ISQS-20). Prague, June 201

    Brane Decay from the Origin of Time

    Full text link
    We present a novel scenario where matter in a spacetime originates from a decaying brane at the origin of time. The decay could be considered as a ``Big Bang''-like event at X^0=0. The closed string interpretation is a time-dependent spacetime with a semi-infinite time direction, with the initial energy of the brane converted into energy flux from the origin. The open string interpretation can be viewed as a string theoretic non-singular initial condition.Comment: 5 pages, 2 eps figure

    Poincar\'{e} gauge theory of gravity

    Full text link
    A Poincar\'{e} gauge theory of (2+1)-dimensional gravity is developed. Fundamental gravitational field variables are dreibein fields and Lorentz gauge potentials, and the theory is underlain with the Riemann-Cartan space-time. The most general gravitational Lagrangian density, which is at most quadratic in curvature and torsion tensors and invariant under local Lorentz transformations and under general coordinate transformations, is given. Gravitational field equations are studied in detail, and solutions of the equations for weak gravitational fields are examined for the case with a static, \lq \lq spin"less point like source. We find, among other things, the following: (1)Solutions of the vacuum Einstein equation satisfy gravitational field equations in the vacuum in this theory. (2)For a class of the parameters in the gravitational Lagrangian density, the torsion is \lq \lq frozen" at the place where \lq \lq spin" density of the source field is not vanishing. In this case, the field equation actually agrees with the Einstein equation, when the source field is \lq \lq spin"less. (3)A teleparallel theory developed in a previous paper is \lq \lq included as a solution" in a limiting case. (4)A Newtonian limit is obtainable, if the parameters in the Lagrangian density satisfy certain conditions.Comment: 27pages, RevTeX, OCU-PHYS-15

    Cabibbo--Kobayashi--Maskawa Mixing in Superstring Derived Standard--like Models

    Full text link
    We examine the problem of three generation quark flavor mixing in realistic, superstring derived standard--like models, constructed in the free fermionic formulation. We study the sources of family mixing in these models and discuss the necessary conditions to obtain a realistic Cabibbo--Kobayashi--Maskawa (CKM) mixing matrix. In a specific model, we estimate the mixing angles and discuss the weak CP violating phase. We argue that the superstring standard--like models can produce a realistic CKM mixing matrix. We discuss the possible textures of quark mass matrices that may be obtained in these models.Comment: WIS--93/35/APR--PH, 29 page

    Aspects of Nonrenormalizable Terms in a Superstring Derived Standard--like Model

    Full text link
    I investigate the role of nonrenormalizable terms, up to order N=8, in a superstring derived standard--like model. I argue that nonrenormalizable terms restrict the gauge symmetry, at the Planck scale, to be SU(3)×SU(2)×U(1)BL×U(1)T3RSU(3)\times SU(2)\times U(1)_{B-L}\times U(1)_{T_{3_R}} rather than SU(3)×SU(2)×U(1)YSU(3)\times SU(2)\times U(1)_Y. I show that breaking the gauge symmetry directly to the Standard Model leads to breaking of supersymmetry at the Planck scale, or to dimension four, baryon and lepton violating, operators. I show that if the gauge symmetry is broken directly to the Standard Model the cubic level solution to the F and D flatness constraints is violated by higher order terms, while if U(1)ZU(1)_{Z^\prime} remains unbroken at the Planck scale, the cubic level solution is valid to all orders of nonrenormalizable terms. I discuss the Higgs and fermion mass spectrum. I demonstrate that realistic, hierarchical, fermion mass spectrum can be generated in this model.Comment: WIS--/92/48/JUN--PH, 28 page
    corecore