41 research outputs found

    Simultaneous measurement of sensor-protein dynamics and motility of a single cell by on-chip microcultivation system

    Get PDF
    Measurement of the correlation between sensor-protein expression, motility and environmental change is important for understanding the adaptation process of cells during their change of generation. We have developed a novel assay exploiting the on-chip cultivation system, which enabled us to observe the change of the localization of expressed sensor-protein and the motility for generations. Localization of the aspartate sensitive sensor protein at two poles in Escherichia coli decreased quickly after the aspartate was added into the cultivation medium. However, it took more than three generations for recovering the localization after the removal of aspartate from the medium. Moreover, the tumbling frequency was strongly related to the localization of the sensor protein in a cell. The results indicate that the change of the spatial localization of sensor protein, which was inherited for more than three generations, may contribute to cells, motility as the inheritable information

    Phototactic and Chemotactic Signal Transduction by Transmembrane Receptors and Transducers in Microorganisms

    Get PDF
    Microorganisms show attractant and repellent responses to survive in the various environments in which they live. Those phototaxic (to light) and chemotaxic (to chemicals) responses are regulated by membrane-embedded receptors and transducers. This article reviews the following: (1) the signal relay mechanisms by two photoreceptors, Sensory Rhodopsin I (SRI) and Sensory Rhodopsin II (SRII) and their transducers (HtrI and HtrII) responsible for phototaxis in microorganisms; and (2) the signal relay mechanism of a chemoreceptor/transducer protein, Tar, responsible for chemotaxis in E. coli. Based on results mainly obtained by our group together with other findings, the possible molecular mechanisms for phototaxis and chemotaxis are discussed

    A putative porin gene of Burkholderia sp. NK8 involved in chemotaxis toward

    Get PDF
    Burkholderia sp. NK8 can utilize 3-chlorobenzoate (3CB) as a sole source of carbon because it has a megaplasmid (pNK8) that carries the gene cluster (tfdT-CDEF) encoding chlorocatechol-degrading enzymes. The expression of tfdT-CDEF is induced by 3CB. In this study, we found that NK8 cells were attracted to 3CB and its degradation products, 3- and 4-chlorocatechol, and β-ketoadipate. Capillary assays revealed that a pNK8-eliminated strain (NK82) was defective in chemotaxis toward β-ketoadipate. The introduction of a plasmid carrying a putative outer membrane porin gene, which we name ompNK8, into strain NK82 restored chemotaxis toward β-ketoadipate. RT-PCR analyses demonstrated that the transcription of the ompNK8 gene was enhanced in the presence of 3CB. A putative porin gene, ompNK8 of Burkholderia sp. NK8 was required chemotaxis toward β-ketoadipate, and was induced by the presence of 3-chlorobenzoate in growth medium

    Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery

    Get PDF
    In Escherichia coli, chemoreceptor clustering at a cell pole seems critical for signal amplification and adaptation. However, little is known about the mechanism of localization itself. Here we examined whether the aspartate chemoreceptor (Tar) is inserted directly into the polar membrane by using its fusion to green fluorescent protein (GFP). After induction of Tar–GFP, fluorescent spots first appeared in lateral membrane regions, and later cell poles became predominantly fluorescent. Unexpectedly, Tar–GFP showed a helical arrangement in lateral regions, which was more apparent when a Tar–GFP derivative with two cysteine residues in the periplasmic domain was cross-linked to form higher oligomers. Moreover, similar distribution was observed even when the cytoplasmic domain of the double cysteine Tar–GFP mutant was replaced by that of the kinase EnvZ, which does not localize to a pole. Observation of GFP–SecE and a translocation-defective MalE–GFP mutant, as well as indirect immunofluorescence microscopy on SecG, suggested that the general protein translocation machinery (Sec) itself is arranged into a helical array, with which Tar is transiently associated. The Sec coil appeared distinct from the MreB coil, an actin-like cytoskeleton. These findings will shed new light on the mechanisms underlying spatial organization of membrane proteins in E. coli

    Systematic Cys mutagenesis of FlgI, the flagellar P-ring component of Escherichia coli

    Get PDF
    The bacterial flagellar motor is embedded in the cytoplasmic membrane, and penetrates the peptidoglycan layer and the outer membrane. A ring structure of the basal body called the P ring, which is located in the peptidoglycan layer, is thought to be required for smooth rotation and to function as a bushing. In this work, we characterized 32 cysteine-substituted Escherichia coli P-ring protein FlgI variants which were designed to substitute every 10th residue in the 346 aa mature form of FlgI. Immunoblot analysis against FlgI protein revealed that the cellular amounts of five FlgI variants were significantly decreased. Swarm assays showed that almost all of the variants had nearly wild-type function, but five variants significantly reduced the motility of the cells, and one of them in particular, FlgI G21C, completely disrupted FlgI function. The five residues that impaired motility of the cells were localized in the N terminus of FlgI. To demonstrate which residue(s) of FlgI is exposed to solvent on the surface of the protein, we examined cysteine modification by using the thiol-specific reagent methoxypolyethylene glycol 5000 maleimide, and classified the FlgI Cys variants into three groups: well-, moderately and less-labelled. Interestingly, the well- and moderately labelled residues of FlgI never overlapped with the residues known to be important for protein amount or motility. From these results and multiple alignments of amino acid sequences of various FlgI proteins, the highly conserved region in the N terminus, residues 1–120, of FlgI is speculated to play important roles in the stabilization of FlgI structure and the formation of the P ring by interacting with FlgI molecules and/or other flagellar components

    Stabilization of Polar Localization of a Chemoreceptor via Its Covalent Modifications and Its Communication with a Different Chemoreceptor

    No full text
    In the chemotaxis of Escherichia coli, polar clustering of the chemoreceptors, the histidine kinase CheA, and the adaptor protein CheW is thought to be involved in signal amplification and adaptation. However, the mechanism that leads to the polar localization of the receptor is still largely unknown. In this study, we examined the effect of receptor covalent modification on the polar localization of the aspartate chemoreceptor Tar fused to green fluorescent protein (GFP). Amidation (and presumably methylation) of Tar-GFP enhanced its own polar localization, although the effect was small. The slight but significant effect of amidation on receptor localization was reinforced by the fact that localization of a noncatalytic mutant version of GFP-CheR that targets to the C-terminal pentapeptide sequence of Tar was similarly facilitated by receptor amidation. Polar localization of the demethylated version of Tar-GFP was also enhanced by increasing levels of the serine chemoreceptor Tsr. The effect of covalent modification on receptor localization by itself may be too small to account for chemotactic adaptation, but receptor modification is suggested to contribute to the molecular assembly of the chemoreceptor/histidine kinase array at a cell pole, presumably by stabilizing the receptor dimer-to-dimer interaction
    corecore