1,891 research outputs found
Quantum Chaos in the Yang-Mills-Higgs System at Finite Temperature
The quantum chaos in the finite-temperature Yang-Mills-Higgs system is
studied. The energy spectrum of a spatially homogeneous SU(2) Yang-Mills-Higgs
is calculated within thermofield dynamics. Level statistics of the spectra is
studied by plotting nearest-level spacing distribution histograms. It is found
that finite temperature effects lead to a strengthening of chaotic effects,
i.e. spectrum which has Poissonian distribution at zero temperature has
Gaussian distribution at finite-temperature.Comment: 6 pages, 5 figures, Revte
Precise calibration of LIGO test mass actuators using photon radiation pressure
Precise calibration of kilometer-scale interferometric gravitational wave
detectors is crucial for source localization and waveform reconstruction. A
technique that uses the radiation pressure of a power-modulated auxiliary laser
to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a
so-called photon calibrator, has been demonstrated previously and has recently
been implemented on the LIGO detectors. In this article, we discuss the
inherent precision and accuracy of the LIGO photon calibrators and several
improvements that have been developed to reduce the estimated voice coil
actuator calibration uncertainties to less than 2 percent (1-sigma). These
improvements include accounting for rotation-induced apparent length variations
caused by interferometer and photon calibrator beam centering offsets, absolute
laser power measurement using temperature-controlled InGaAs photodetectors
mounted on integrating spheres and calibrated by NIST, minimizing errors
induced by localized elastic deformation of the mirror surface by using a
two-beam configuration with the photon calibrator beams symmetrically displaced
about the center of the optic, and simultaneously actuating the test mass with
voice coil actuators and the photon calibrator to minimize fluctuations caused
by the changing interferometer response. The photon calibrator is able to
operate in the most sensitive interferometer configuration, and is expected to
become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit
Imaging Simulations of the Sunyaev-Zel'dovich Effect for ALMA
We present imaging simulations of the Sunyaev-Zel'dovich effect of galaxy
clusters for the Atacama Large Millimeter/submillimeter Array (ALMA) including
the Atacama Compact Array (ACA). In its most compact configuration at 90GHz,
ALMA will resolve the intracluster medium with an effective angular resolution
of 5 arcsec. It will provide a unique probe of shock fronts and relativistic
electrons produced during cluster mergers at high redshifts, that are hard to
spatially resolve by current and near-future X-ray detectors. Quality of image
reconstruction is poor with the 12m array alone but improved significantly by
adding ACA; expected sensitivity of the 12m array based on the thermal noise is
not valid for the Sunyaev-Zel'dovich effect mapping unless accompanied by an
ACA observation of at least equal duration. The observations above 100 GHz will
become excessively time-consuming owing to the narrower beam size and the
higher system temperature. On the other hand, significant improvement of the
observing efficiency is expected once Band 1 is implemented in the future.Comment: 16 pages, 12 figures. Accepted for publication in PASJ. Note added in
proof is include
Precise calibration of LIGO test mass actuators using photon radiation pressure
Precise calibration of kilometer-scale interferometric gravitational wave
detectors is crucial for source localization and waveform reconstruction. A
technique that uses the radiation pressure of a power-modulated auxiliary laser
to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a
so-called photon calibrator, has been demonstrated previously and has recently
been implemented on the LIGO detectors. In this article, we discuss the
inherent precision and accuracy of the LIGO photon calibrators and several
improvements that have been developed to reduce the estimated voice coil
actuator calibration uncertainties to less than 2 percent (1-sigma). These
improvements include accounting for rotation-induced apparent length variations
caused by interferometer and photon calibrator beam centering offsets, absolute
laser power measurement using temperature-controlled InGaAs photodetectors
mounted on integrating spheres and calibrated by NIST, minimizing errors
induced by localized elastic deformation of the mirror surface by using a
two-beam configuration with the photon calibrator beams symmetrically displaced
about the center of the optic, and simultaneously actuating the test mass with
voice coil actuators and the photon calibrator to minimize fluctuations caused
by the changing interferometer response. The photon calibrator is able to
operate in the most sensitive interferometer configuration, and is expected to
become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit
Arc-like distribution of high CO(J=3-2)/CO(J=1-0) ratio gas surrounding the central star cluster of the supergiant HII region NGC 604
We report the discovery of a high CO(J=3-2)/CO(J=1-0) ratio gas with an
arc-like distribution (``high-ratio gas arc'') surrounding the central star
cluster of the supergiant HII region NGC 604 in the nearby spiral galaxy M 33,
based on multi-J CO observations of a 5' 5' region of NGC 604
conducted using the ASTE 10-m and NRO 45-m telescopes. The discovered
``high-ratio gas arc'' extends to the south-east to north-west direction with a
size of 200 pc. The western part of the high-ratio gas arc closely
coincides well with the shells of the HII regions traced by H and radio
continuum peaks. The CO(J=3-2)/CO(J=1-0) ratio, R_{3-2/1-0}, ranges between 0.3
and 1.2 in the observed region, and the R_{3-2/1-0} values of the high-ratio
gas arc are around or higher than unity, indicating very warm (T_kin > 60 K)
and dense (n(H_2) > 10^{3-4} cm^{-3}) conditions of the high-ratio gas arc. We
suggest that the dense gas formation and second-generation star formation occur
in the surrounding gas compressed by the stellar wind and/or supernova of the
first-generation stars of NGC 604, i.e., the central star cluster of NGC 604.Comment: 4 pages, 4 figures. The Astrophysical Journal Letters, in pres
The Sunyaev-Zel'dovich Effect at Five Arc-seconds: RXJ1347.5-1145 Imaged by ALMA
We present the first image of the thermal Sunyaev-Zel'dovich effect (SZE)
obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). Combining
7-m and 12-m arrays in Band 3, we create an SZE map toward a galaxy cluster
RXJ1347.5-1145 with 5 arc-second resolution (corresponding to the physical size
of 20 kpc/h), the highest angular and physical spatial resolutions achieved to
date for imaging the SZE, while retaining extended signals out to 40
arc-seconds. The 1-sigma statistical sensitivity of the image is 0.017 mJy/beam
or 0.12 mK_CMB at the 5 arc-second full width at half maximum. The SZE image
shows a good agreement with an electron pressure map reconstructed
independently from the X-ray data and offers a new probe of the small-scale
structure of the intracluster medium. Our results demonstrate that ALMA is a
powerful instrument for imaging the SZE in compact galaxy clusters with
unprecedented angular resolution and sensitivity. As the first report on the
detection of the SZE by ALMA, we present detailed analysis procedures including
corrections for the missing flux, to provide guiding methods for analyzing and
interpreting future SZE images by ALMA.Comment: 20 pages, 13 figures. Accepted for publication in PAS
- …