2,257 research outputs found

    Instability of Shear Waves in an Inhomogeneous Strongly Coupled Dusty Plasma

    Get PDF
    It is demonstrated that low frequency shear modes in a strongly coupled, inhomogeneous, dusty plasma can grow on account of an instability involving the dynamical charge fluctuations of the dust grains. The instability is driven by the gradient of the equilibrium dust charge density and is associated with the finite charging time of the dust grains. The present calculations, carried out in the generalized hydrodynamic viscoelastic formalism, also bring out important modifications in the threshold and growth rate of the instability due to collective effects associated with coupling to the compressional mode.Comment: 9 pages with 2 figure

    Fracture and crack growth in orthotropic laminates

    Get PDF
    A mathematical model based on the classical shear-lag assumptions is used to study the residual strength and fracture behavior of composite laminates with symmetrically placed buffer strips. The laminate is loaded by a uniform remote longitudinal tensile strain and has initial damage in the form of a transverse crack in the parent laminate between buffer strips. The crack growth behavior as a function of material properties, number of buffer-strip plies, spacing, width of buffer strips, longitudinal matrix splitting, and debonding at the interface is studied. Buffer-strip laminates are shown to arrest fracture and increase the residual strengths significantly over those of one material laminates, with S-glass being a more effective buffer strip material than Kevlar in increasing the damage tolerance of graphite/epoxy panels. For a typical graphite/epoxy laminate with S-glass buffer-strips, the residual strength is about 2.4 times the residual strength of an all graphite/epoxy panel with the same crack length. Approximately 50% of this increase is due to the S-glass/epoxy buffer-strips, 40% due to longitudinal splitting of the buffer strip interface and 10% due to bonding

    Fluid simulation studies of the dynamical behaviour of one dimensional relativistic electromagnetic solitons

    Get PDF
    A numerical fluid simulation investigation of the temporal evolution of a special class of traveling wave solution of the one dimensional relativistic cold plasma model is reported.The solutions consist of coupled electromagnetic and plasma waves in a solitary pulse shape (Phys. Rev. Lett. 68, 3172(1992); Phys. Plasmas 9, 1820(2002)).Issues pertaining to their stability, mutual collisional interactions and propagation in an inhomogeneous plasma medium are addressed. It is found that solitary pulses that consist of a single light peak trapped in a modulated density structure are long lived whereas structures with multiple peaks of trapped light develop an instability at the trailing edge. The interaction properties of two single peak structures show interesting dependencies on their relative amplitudes and propagation speeds and can be understood in terms of their propagation characteristics in an inhomogeneous plasma medium
    corecore