34 research outputs found

    Il10 Deficiency Rebalances Innate Immunity to Mitigate Alzheimer-Like Pathology

    Get PDF
    SummaryThe impact of inflammation suppressor pathways on Alzheimer’s disease (AD) evolution remains poorly understood. Human genetic evidence suggests involvement of the cardinal anti-inflammatory cytokine, interleukin-10 (IL10). We crossed the APP/PS1 mouse model of cerebral amyloidosis with a mouse deficient in Il10 (APP/PS1+Il10−/−). Quantitative in silico 3D modeling revealed activated Aβ phagocytic microglia in APP/PS1+Il10−/− mice that restricted cerebral amyloidosis. Genome-wide RNA sequencing of APP/PS1+Il10−/− brains showed selective modulation of innate immune genes that drive neuroinflammation. Il10 deficiency preserved synaptic integrity and mitigated cognitive disturbance in APP/PS1 mice. In vitro knockdown of microglial Il10-Stat3 signaling endorsed Aβ phagocytosis, while exogenous IL-10 had the converse effect. Il10 deficiency also partially overcame inhibition of microglial Aβ uptake by human Apolipoprotein E. Finally, the IL-10 signaling pathway was abnormally elevated in AD patient brains. Our results suggest that “rebalancing” innate immunity by blocking the IL-10 anti-inflammatory response may be therapeutically relevant for AD

    Macrophages in Alzheimer’s disease: the blood-borne identity

    Get PDF
    Alzheimer’s disease (AD) is a progressive and incurable neurodegenerative disorder clinically characterized by cognitive decline involving loss of memory, reasoning and linguistic ability. The amyloid cascade hypothesis holds that mismetabolism and aggregation of neurotoxic amyloid-β (Aβ) peptides, which are deposited as amyloid plaques, are the central etiological events in AD. Recent evidence from AD mouse models suggests that blood-borne mononuclear phagocytes are capable of infiltrating the brain and restricting β-amyloid plaques, thereby limiting disease progression. These observations raise at least three key questions: (1) what is the cell of origin for macrophages in the AD brain, (2) do blood-borne macrophages impact the pathophysiology of AD and (3) could these enigmatic cells be therapeutically targeted to curb cerebral amyloidosis and thereby slow disease progression? This review begins with a historical perspective of peripheral mononuclear phagocytes in AD, and moves on to critically consider the controversy surrounding their identity as distinct from brain-resident microglia and their potential impact on AD pathology

    CNS Infiltration of Peripheral Immune Cells: D-Day for Neurodegenerative Disease?

    Get PDF
    While the central nervous system (CNS) was once thought to be excluded from surveillance by immune cells, a concept known as “immune privilege,” it is now clear that immune responses do occur in the CNS—giving rise to the field of neuroimmunology. These CNS immune responses can be driven by endogenous (glial) and/or exogenous (peripheral leukocyte) sources and can serve either productive or pathological roles. Recent evidence from mouse models supports the notion that infiltration of peripheral monocytes/macrophages limits progression of Alzheimer's disease pathology and militates against West Nile virus encephalitis. In addition, infiltrating T lymphocytes may help spare neuronal loss in models of amyotrophic lateral sclerosis. On the other hand, CNS leukocyte penetration drives experimental autoimmune encephalomyelitis (a mouse model for the human demyelinating disease multiple sclerosis) and may also be pathological in both Parkinson's disease and human immunodeficiency virus encephalitis. A critical understanding of the cellular and molecular mechanisms responsible for trafficking of immune cells from the periphery into the diseased CNS will be key to target these cells for therapeutic intervention in neurodegenerative diseases, thereby allowing neuroregenerative processes to ensue

    Flavonoids as Modulators of Amyloid Precursor Protein Metabolism and Alzheimer Disease Pathology

    Get PDF
    Alzheimer disease (AD) is a progressive neurodegenerative disorder pathologically characterized by deposition of ß-amyloid (Aß) peptides as plaques in the brain. Central to this AD pathology is mismetabolism of the amyloid precursor protein (APP). Recent studies suggest that flavonoids, a class of secondary plant metabolites, may be useful for the prevention and treatment of a variety of neurodegenerative diseases. The studies detailed herein, investigate the ability of two such classes of flavonoids, green tea derived catechins and 5,7-dihydroxyflavones, to modulate APP metabolism in Swedish mutant APP (APPsw) models of AD. Studies showed that green tea derived (-)-epigallocatechin-3-gallate (EGCG) effectively reduced Aß generation and resultant amyloidosis both in vitro and in vivo. In concert with these findings, EGCG markedly promoted non-amyloidogenic APP proteolysis via activation of the putative a-secretase, a-disintegrin-and-metalloprotease-10 (ADAM10). Furthermore, luteolin and various related 5,7-dihydroxyflavones, effectively reduced Aß generation and resultant amyloidosis both in vitro and in vivo, as well. Data revealed that luteolin decreased amyloidogenic γ-secretase APP proteolysis via presenilin-1 (PS1) carboxyl-terminal fragment (CTF) phosphorylation. Elucidation of these flavonoids\u27 cellular/molecular mechanisms also revealed their potential for opposing neurofibrillary tangle (NFT) pathology, another hallmark of AD. These data raise the possibility that flavonoid administration to AD patients may prove to be viable and effective prophylactic strategy

    Treatment of glycogen synthase kinase-based disease

    Get PDF
    The bioflavonoid luteolin reduces amyloid-β peptide (Aβ) generation. Luteolin is also a selective GSK-3 inhibitor that 1) decreases amyloidogenic γ-secretase APP processing, and 2) promotes presenilin-1 (PS1) carboxyl-terminal fragment (CTF) phosphorylation. GSK-3α activity is essential for both PS1 CTF phosphorylation states and PS1-APP interaction. To validate The findings were validated in vivo, using a Tg2576 Alzheimer\u27s Disease model system. Luteolin treatment decreased soluble Aβ levels, reduced GSK-3 activity, and disrupted PS1-APP association

    Flavonoid treatment of glycogen synthase kinase-based disease

    Get PDF
    The flavonoid luteolin reduces amyloid-β peptide (Aβ) generation. Luteolin is also a selective GSK-3 inhibitor that 1) decreases amyloidogenic γ-secretase APP processing, and 2) promotes presenilin 1 (PS1) carboxyl-terminal fragment (CTF) phosphorylation. GSK-3α activity is essential for both PS1 CTF phosphorylation states and PS1-APP interaction. These findings were validated in vivo, using a Tg2576 Alzheimer\u27s Disease model system. Luteolin treatment decreased soluble Aβ levels, reduced GSK-3 activity, and disrupted PS1-APP association. In addition, Tg2576 mice treated with diosmin, a glycoside of a flavone structurally and functionally similar to luteolin (diosmetin), displayed significantly reduced Aβ pathology as well

    EGCG functions through estrogen receptor-mediated activation of ADAM10 in the promotion of non-amyloidogenic processing of APP

    Get PDF
    AbstractEstrogen depletion following menopause has been correlated with an increased risk of developing Alzheimer’s disease (AD). We previously explored the beneficial effect of (−)-epigallocatechin-3-gallate (EGCG) on AD mice and found increased non-amyloidogenic processing of amyloid precursor protein (APP) through the α-secretase a disintegrin and metallopeptidase domain 10 (ADAM10). Our results in this study suggest that EGCG-mediated enhancement of non-amyloidogenic processing of APP is mediated by the maturation of ADAM10 via an estrogen receptor-α (ERα)/phosphoinositide 3-kinase/Ak-transforming dependent mechanism, independent of furin-mediated ADAM10 activation. These data support prior assertions that central selective ER modulation could be a therapeutic target for AD and support the use of EGCG as a well-tolerated alternative to estrogen therapy in the prophylaxis and treatment of this disease

    Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression

    No full text
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
    corecore