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TREATMENT OF GLYCOGEN SYNTHASE
KINASE-BASED DISEASE

CROSS REFERENCE TO RELATED
APPLICATION

This application claims priority to currently U.S. Provi-
sional Patent Application No. 60/886,573, entitled “Glyco-
gen Synthase Kinase-3/Gamma Secretase Inhibitors”, filed
on Jan. 25, 2007, the contents of which are herein incorpo-
rated by reference.

FIELD OF INVENTION

This invention relates to enzyme inhibitors. Specifically,
the invention relates to inhibitors of amyloid peptide process-
ing enzymes and treatments of Alzheimer’s Disease.

BACKGROUND OF THE INVENTION

Alzheimer’s Disease (AD) is a widespread cognitive dis-
ease characterized by neurodegeneration, agglomeration of
p-Amyloid (A) protein plaques around neurons and within
cerebral vasculature, and neurofibrilliary tangles in the brain.
Extensive studies indicate AP peptide generation and plaque
aggregation are key pathological events in the development of
AD. The studies evidence A} peptides are neurotoxic, as they
are reported mediators of apoptosis, inflammation, and oxi-
dative stress. For this reason, some of the earliest proposed
therapeutic strategies entail the prevention or elimination of
these AP peptides and subsequent deposits.

Ap peptides are produced via the amyloidogenic pathway
of amyloid precursor protein (APP) proteolysis, which
involves the concerted effort of f and y-secretases. Initially,
p-secretase (BACE) cleaves APP, creating an Af-containing
carboxyl-terminal fragment known as §-C-terminal fragment
(p-CTF), or C99 and an amino-terminal, soluble APP-f
(sAPP-p) fragment, which is released extracellularly. Intrac-
ellularly, the p-CTF fragment is then cleaved by a multi-
protein y-secretase complex, resulting in generation of the A
peptide and a smaller y-CTF, also known as C57. While both
cleavage events are essential to the formation of the peptide,
it is the y-secretase cleavage that determines which of the two
major forms of the peptide (AP, _4, 45) Will be generated and,
consequently, the peptide’s ability to aggregate and the rate at
which it is deposited. Thus, one clear potential therapeutic
target for AD has been y-secretase.

Notch signaling pathways are important in cellular devel-
opment and dysregulation is linked to tumorigenesis. Intrac-
ellular y-secretase processes Notch pathway receptors.
Despite the potential toxicity involving possible disruption of
Notch signaling and intracellular accumulation of B-CTFs,
y-secretase inhibition remains a viable anti-amyloidogenic
strategy. Novel y-secretase inhibitors (GSI) significantly
reduce AP production both in vitro and in vivo, initial testing
of' GSIs has indicated the GSIs improve cognitive functioning
in a transgenic mouse model of AD (Tg2576). These finding
have functioned to further the vigorous search for potential
candidate GSIs. Glycogen synthase kinase 3 (GSK-3) is a
tonically active serine/threonine kinase, which has been
implicated in several disorders of the CNS. With regard to
AD, both isoforms of GSK-3 (o and ) have been found to
directly phosphorylate tau on residues specific to hyperphos-
phorylated paired helical filaments (PHF), GSK-3§ has been
shown to phosphorylate APP and to contribute to AP medi-
ated neurotoxicity, and GSK-3f has been found to phospho-
rylate PS1, which may act as a docking site for subsequent tau
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phosphorylation. Therefore, GSK-3 inhibitors are especially
attractive as they may not only oppose A generation but also
neurofibrillary tangle (NFT) formation. Moreover, Phiel and
colleages (2003) reported that inhibition of the GSK-3a. iso-
form may regulate y-secretase cleavage of APP in a substrate-
specific manner Accordingly, this selective inhibition of
GSK-3 might provide the maximal therapeutic benefit while
reducing the potential for toxic side-effects.

SUMMARY OF THE INVENTION

In one embodiment, flavonoids were found to selectively
inhibit GSK-3 activity, thereby preventing PP1 and PS-1
phosphorylation and inactivating gamma secretase. Fla-
vonoids within the flavone family, including lutoelin, dis-
omin, and diosmetin were found to effectively inhibit GSK-3,
and very effectively inhibit GSK-3a. Luteolin, was found to
attenuate Af generation and possesses the ability to protect
against the multiple arms of AD pathology. Luteolin, catego-
rized as a citrus bioflavonoid, has been previously shown to be
a potent free radical scavenger, anti-inflammatory agent, and
immunomodulator. Treatment of both murine N2a cells trans-
fected with the human “Swedish” mutant form of APP (Swe-
APP N2a cells) and primary neuronal cells derived from
Alzheimer’s “Swedish” mutant APP overexpressing mice
(Tg2576 line) with luteolin results in a significant reduction
in AP generation. Data show that luteolin treatment achieves
this reduction through selective inactivation of the GSK-3a
isoform. As in vivo validation, administration of luteolin to
Tg2576 mice similarly reduces Af generation through
GSK-3 inhibition.

In another embodiment, GSK-3[3 phosphorylates APP and
PS1, contributing to Ap mediated neurotoxicity. Moreover,
y-secretase cleaves downstream proteins of APP processing,
resulting in generation of either major form of the Af peptide
(AP, 40, 42)- Flavonoids efficiently inhibit proper association
of the y-secretase complex, through increased phosphoryla-
tion of presenilin 1 (PS1), preventing APP processing. Fla-
vones, including lutoelin, disomin, and diosmetin were found
to efficiently abrogate y-secretase complex, preventing PS1
from associating with other y-secretase complex components.

Many amyloid diseases are characterized by amyloid pro-
tein entanglement. In normally functioning brains, Tau asso-
ciates with tubulin thereby stabilizing microtubules. How-
ever, when tau becomes hyperphosphorylated, the
hyperphosphorylated peptides aggregate into paired helical
filaments, which amass in nerve cell bodies as neurofibrillary
tangles and dystrophic neuritis of amyloid plaques. In another
embodiment, flavonoids, especially flavones, inhibit the
activity of GSK-3, thereby preventing tau hyperphosphotry-
lation. Preferably, the flavonoids are either lutoelin, disomin,
or diosmetin.

The treatment methods discussed above are effective at
treating amyloid diseases. The treatments are effective and
treating and preventing Alzheimer’s Disease, Huntington’s
Disease, and type 11 diabetes.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the invention, reference
should be made to the following detailed description, taken in
connection with the accompanying drawings, in which:

FIG. 1 is a western blot depicting luteolin reducing AP
generation and decreasing y-secretase cleavage activity in
cultured neuronal cells. SweAPP N2a cells were treated with
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luteolin at various doses as indicated for 12 hrs. Secreted
AB) 40, 42 peptides were analyzed by immunoprecipitation
and Western blot.

FIG. 2 shows luteolin reduces A} generation and decreases
y-secretase cleavage activity in cultured neuronal cells. Swe-
APP N2a cells were treated with luteolin at various doses as
indicated for 12 hrs. Secreted (A) AP, ,, peptides or (B)
AP, _4, were analyzed by ELIS A (left; n=3 for each condition)
in conditional media. For A ELISA, data are represented as
a percentage of AP, ,, peptides secreted 12 hrs after luteolin
treatment relative to control (untreated).

FIG. 3 is a blot showing luteolin reducing A} generation
and decreasing y-secretase cleavage activity in cultured neu-
ronal cells. SweAPP N2a cells were treated with luteolin at
various doses as indicated for 12 hrs. APP CTFs were ana-
lyzed by Western blot in cell lysates and relative fold mean
over. One-way ANOVA followed by post hoc comparison
revealed significant differences between each dose (P<0.005)
except between 20 uM and 40 pM (P>0.05).

FIG. 4 is a bar graph of the blot in FIG. 3, and depicting
Iuteolin reducing AP generation and decreasing y-secretase
cleavage activity in cultured neuronal cells. SweAPP N2a
cells were treated with luteolin at various doses as indicated
for 12 hrs. The relative fold mean over control for (A) §-CTF
and (B) a-CTF was calculated by Densitometry analysis and
graphed. One-way ANOVA followed by post hoc comparison
revealed significant differences between each dose (P<0.005)
except between 20 pM and 40 uM (P>0.05). SweAPP N2a
cells were treated with luteolin at a single dose (20 uM) for
various time points as indicted.

FIG. 5 is a blot depicting luteolin reducing AP generation
and decreasing y-secretase cleavage activity in cultured neu-
ronal cells. Tg2576 derived neuronal cells were treated with
luteolin at various doses as indicated for 12 hrs. Secreted
A, 4, peptides were analyzed by immunoprecipitation and
Western in conditional media. For AP ELISA, data are rep-
resented as a percentage of A, , 4, peptides secreted 12 hrs
after luteolin treatment relative to control (untreated).

FIG. 6 is a graph of the blot in FIG. 5, and showing luteolin
reducing Af generation and decreasing y-secretase cleavage
activity in cultured neuronal cells. Tg2576 derived neuronal
cells were treated with luteolin at various doses as indicated
for 12 hrs. Secreted (A) AR, 4, or (B) AP, _,, peptides were
analyzed by ELISA (left; n=3 for each condition) in condi-
tional media. For Af ELISA, data are represented as a per-
centage of AP, 4, 4, peptides secreted 12 hrs after luteolin
treatment relative to control (untreated).

FIG. 7 is a blot showing luteolin reducing A} generation
and decreasing y-secretase cleavage activity in cultured neu-
ronal cells. Tg2576 derived neuronal cells were treated with
luteolin at various doses as indicated for 12 hrs. APP CTFs
were analyzed by Western blot in cell lysates

FIG. 8 is a graph of the signal strength of the blot in FIG. 7,
and depicting luteolin reducing A generation and decreasing
y-secretase cleavage activity in cultured neuronal cells.
Tg2576 derived neuronal cells were treated with luteolin at
various doses as indicated for 12 hrs. APP CTFs were ana-
lyzed by Western blot and relative fold mean over control (A)
p-CTF or (B) a-CTF was calculated by Densitometry analy-
sis. One-way ANOVA followed by post hoc comparison
revealed significant differences between each dose (P<0.005)
except between 20 pM and 40 uM (P>0.05). SweAPP N2a
cells were treated with luteolin at a single dose (20 uM) for
various time points as indicted.

FIG. 9 is a graph of luteolin reducing Af generation and
decreasing y-secretase cleavage activity in cultured neuronal
cells in a dose dependent manner. (A) Secreted A, 45 4»
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peptides were analyzed in conditional media by ELISA, (n=3
for each condition). (B) y-secretase activity was analyzed in
cell lysates using secretase cleavage activity assay, (n=3 for
each condition). Data was presented as a percentage of fluo-
rescence units/milligrams protein activated 30, 60, 90, 120,
300 min after luteolin treatment relative to control (un-
treated). A difference was noted between each time point
examined (P<0.005). In parallel, a structurally similar com-
pound, apigenin was used as control. However, results were
not similar to luteolin (data not shown).

FIG. 10 is a graph showing luteolin reduces A generation
and decreases y-secretase cleavage activity in cultured neu-
ronal cells in a time-dependent manner SweAPP N2a cells
were treated with luteolin at a single dose (20 uM) for various
time points as indicted. (A) Secreted A, 4, 4, peptides were
analyzed in conditional media by ELISA, (n=3 for each con-
dition). (B) y-secretase activity was analyzed in cell lysates
using secretase cleavage activity assay, (n=3 for each condi-
tion). Data presented as a percentage of fluorescence units/
milligrams protein activated 30, 60, 90, 120, 300 min after
luteolin treatment relative to control (untreated). A difference
was noted between each time point examined (P<0.005). In
parallel, a structurally similar compound, apigenin was used
as control. However, results were not similar to luteolin (data
not shown).

FIG. 11 is a blot showing luteolin selectively inactivates
GSK-3a. SweAPP N2a cells were treated with luteolin at 20
uM for various time points as indicated. Cell lysates were
prepared and subjected to Western blot analysis in phospho-
rylated forms of GSK-30/[. Western blot analysis using anti-
phospho-GSK-3a. (Ser*!) antibody shows one band (51 kDa)
corresponding to phosphorylated form of GSK-3a or using
anti-GSK-3 monoclonal antibody recognizes both total GSK-
3o and GSK-3p, 51 and 47 kDa, respectively. Western blot
analysis using anti-actin antibody shows actin protein (as an
internal reference control). Densitometry analysis shows the
ratio of phospho-GSK-3a. (Ser?!) to total GSK-3a as indi-
cated below the figures (n=3 for each condition).

FIG. 12 is a graph of the blot in FIG. 11, and showing signal
ratios of p-GSK-3a. SweAPP N2a cells were treated with
Iuteolin at 20 uM for various time points as indicated. Cell
lysates were prepared and subjected to Western blot analysis
in phosphorylated forms of GSK-30/p3 and one-way ANOVA
followed by post hoc comparison revealed a significant dif-
ference between O min and 5, 10, 15, 20 or 25 min (P<0.001).
Anti-actin antibody was used as internal reference control.

FIG. 13 is a blot showing luteolin selectively inactivates
GSK-3a. SweAPP N2a cells were treated with luteolin at 20
uM for various time points as indicated. Cell lysates were
prepared and subjected to Western blot analysis in phospho-
rylated forms of GSK-30/[3. Western blot analysis using anti-
phospho-GSK-3a/B(Tye?’*?1%) antibody shows two bands
(51 and 47 kDa) corresponding to phosphorylated forms of
GSK-3a and GSK-3f or using anti-phospho-GSK-3p (Ser’)
antibody recognizes phosphorylated form of GSK-3f at 47
kDa. Anti-actin antibody was used as shows an internal ref-
erence control. Densitometry analysis shows the ratio of
phospho-GSK-3a. (Tye?”??'%) to total GSK-30. as indicated
below the figures (n=3 for each condition). A significant
difference was noted between 30 min and 45, 60, 75, 90, 120,
150 or 180 min (P<0.005).

FIG. 14 is a graph showing luteolin selectively phospho-
horylates Serine 21 of GSK-3a.. SweAPP N2a cells were
treated with 20 uM luteolin for various time points as indi-
cated. Cell lysates were prepared and subjected to Western
blot analysis. Anti-phospho-GSK-3¢. (Ser*!) antibody shows
one band (51 kDa) corresponding to phosphorylated form of
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GSK-3a or using anti-GSK-3 monoclonal antibody recog-
nizes both total GSK-3c. and GSK-3f3, 51 and 47 kDa, respec-
tively. Western blot analysis using anti-actin antibody shows
actin protein (as an internal reference control). Densitometry
analysis shows the ratio of phospho-GSK-3a. (Ser**) to total
GSK-3a as indicated below the figures (n=3 for each condi-
tion). One-way ANOVA followed by post hoc comparison
revealed a significant difference between 0 min and 5, 10, 15,
20 or 25 min (P<0.001).

FIG. 15 is a blot showing luteolin selectively phosphohory-
lates Serine 21 of GSK-3a. Tg2576 derived neuronal cells
were treated with 20 uM luteolin for various time points as
indicated. Cell lysates were prepared and subjected to West-
ern blot analysis in phosphorylated forms of GSK-
30/p. Western blot analysis using anti-phospho-GSK-3c/f
(Tye”®"21%) antibody shows two bands (51 and 47 kDa) cor-
responding to phosphorylated forms of GSK-3c.and GSK-33
or using anti-phospho-GSK-3f (Ser®) antibody recognizes
phosphorylated form of GSK-3p at 47 kDa. Anti-actin anti-
body was used as shows an internal reference control.

FIG. 16 is a graph of the blot in FIG. 15, and showing
Iuteolin selectively phosphohorylates Serine 21 of GSK-3a.
Densitometry analysis shows the ratio of phospho-GSK-3a
(Tye?”1%) to total GSK-3a as indicated below the figures
(n=3 for each condition). A significant difference was noted
between 30 min and 45, 60, 75, 90, 120, 150 or 180 min
(P<0.005).

FIG. 17 is a blot indicating luteolin selectively inactivates
GSK-3a. Tg2576 derived neuronal cells were treated with
Iuteolin at 20 uM for various time points as indicated. Cell
lysates were prepared and subjected to Western blot analysis
in phosphorylated forms of GSK-30/p3. Western blot analysis
using anti-phospho-GSK-3c. (Ser’’) antibody shows one
band (51 kDa) corresponding to phosphorylated form of
GSK-3a or using anti-GSK-3 monoclonal antibody recog-
nizes both total GSK-3c. and GSK-3§3, 51 and 47 kDa, respec-
tively. Anti-phospho-GSK-30u/f(Tye?”?'%) antibody shows
two bands (51 and 47 kDa) corresponding to phosphorylated
forms of GSK-3a and GSK-3f or using anti-phospho-GSK-
3P (Ser®) antibody recognizes phosphorylated form of GSK-
3P at 47 kDa. Anti-actin antibody was used as an internal
reference control.

FIG. 18 is a graph of the protein levels of GSK-3a and
GSK-3p following luteolin treatment. SweApp N2a cells
were treated with 25 pM luteolin for the times indicated. Cell
lysates were prepared and subjected to Western blot, probing
for anti-phospho-GSK-3c. (Ser*') and phospho-GSK-3c.
(Tye*?1%). Densitometry analysis was conducted of the
ratio of phospho-GSK-3a. (Ser*?) to total GSK-3c. or phos-
pho-GSK-30. (Tye?’?2'%) to total GSK-3a. (n=3 for each
condition). One-way ANOVA followed by post hoc compari-
son revealed a significant difference between 30 min and 45,
60,75, 90, 120, 150 or 180 min (P<0.005).

FIG. 19 is a blot showing PS1 phosphorylation is associ-
ated with luteolin-mediated inhibition of AP generation.
SweAPP N2a cells were treated with luteolin at indicated
doses for 4 hrs. Cell lysates were prepared from these cells
and subjected to Western blot analyses of PS1 C-terminal
fragments (CTF). (A) Western blot analysis by anti-PS1 CTF
antibody shows two bands corresponding to phosphorylated
PS1 CTF (p-CTF) and one dephosphorylated PS1 CTF
(CTF). (B) Densitometry analysis shows the ratio of PS1
p-CTF to CTF. At test revealed a significant deference
between luteolin doses and time points forratio of PS1 p-CTF
to CTF (P<0.005 with n=3 for each condition, but not for ratio
otholo PS1to PS1 NTF (P>0.05 with n=3 for each condition)
at each time-point examined. (C) Cultured media were col-
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lected for AP ELISA. Data corresponds to percentage of
AB) 40, 4> peptides secreted 4 hrs after luteolin treatment
relative to control (untreated) as indicated.

FIG. 20 shows PS1 phosphorylation is associated with
Iuteolin-mediated inhibition of AP generation. SweAPP N2a
cells were treated with luteolin at 20 pM for various time
points as indicated. Cell lysates were prepared from these
cells and subjected to Western blot analyses of PS1 C-termi-
nal fragments (CTF). (A) Western blot analysis by anti-PS1
CTF antibody shows two bands corresponding to phospho-
rylated PS1 CTF (p-CTF) and one dephosphorylated PS1
CTF (CTF). (B) Densitometry analysis shows the ratio of PS1
p-CTF to CTF. At test revealed a significant deference
between luteolin doses and time points forratio of PS1 p-CTF
to CTF (P<0.005 with n=3 for each condition, but not for ratio
otholo PS1to PS1 NTF (P>0.05 with n=3 for each condition)
at each time-point examined. (C) Cultured media were col-
lected for AP ELISA. Data corresponds to percentage of
AP, 40, 4> peptides secreted 4 hrs after luteolin treatment
relative to control (untreated) as indicated.

FIG. 21 is a blot depicting PS1 phosphorylation is associ-
ated with luteolin-mediated inhibition of AP generation.
SweAPP N2a cells were treated with luteolin (20 uM) for 30
min During the luteolin incubation, cell lysates were incu-
bated with (A) calf-intestine alkaline phosphatase (CIAP) for
30 min or (B) buffer for various time points. Western blot
analysis by anti-PS1 CTF antibody confirms two higher
molecular weight bands corresponding to phosphorylated
isoforms.

FIG. 22 is a densitometric graph of the blots in FIG. 21,
showing the ratio of PS1 p-CTF to CTF.

FIG. 23 shows PS1 phosphorylation is associated with
Iuteolin-mediated inhibition of AP generation. SweAPP N2a
cells were treated with luteolin at a range of doses for 4 hrs.
Cell lysates were prepared from these cells and subjected to
Western blot analyses of PS1 N-terminal fragment (NTF).
Western blot analysis by anti-PS1 CTF antibody shows two
bands corresponding to phosphorylated PS1 CTF (p-CTF)
and one dephosphorylated PS1 CTF (CTF). (B) At test of the
densitometry analysis revealed a significant deference
between luteolin doses and time points forratio of PS1 p-CTF
to CTF (P<0.005 with n=3 for each condition) of FIGS. 19(C)
and 20(C), but not for ratio of holo PS1 to PS1 NTF (P>0.05
with n=3 for each condition) at each time-point examined.

FIG. 24 depicts GSK-3a. regulating PS1 phosphorylation.
SweAPP N2a cells were treated with a known GSK-3 inhibi-
tor (SB-415286) at 20 pM for various time points. (A) West-
ern blot analysis by anti-PS1 CTF antibody produces consis-
tent PS1-CTF levels among non-treated and luteolin treated
cells, whereas PS1-CTF phosphorylation profiles increase
sharply at 60 minutes but quickly stabilize at a lower, though
elevated, level. (B) Densitometry analysis shows the ratio of
PS1 p-CTF to CTF and ratio of holo PS1 to actin as indicated.
At test revealed significant differences between time points
for the ratio of PS1 p-CTF to CTF (P<0.001 with n=3 for each
condition).

FIG. 25 depicts GSK-3a. regulating PS1 phosphorylation.
SweAPP N2a cells transfected with siRNA targeting GSK-
3a, B, or mock transfected 48 hrs post-transfection. Prior to
experiments, siRNA knockdown efficiency >70% for GSK-
30,  was confirmed by Western blot analysis (data not
shown). (A) The expression of PS1 C-terminal fragments was
analyzed by Western blot in cell lysates of the transfected
cells. (B) Densitometric analysis reveals the ratio of PS1
p-CTF to CTF as indicated. At test revealed significant dif-
ferences between GSK-3a siRNA-transfected cells and
GSK-3f siRNA or control (Mock transfected cells) (P<0.001
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with n=4 for each condition) on the ratio of PS1 p-CTF to
CTF. In addition, at test also revealed significant differences
between luteolin treated cells and GSK-3[ siRNA or control
(Mock transfeced cells) (P<0.001 with n=4 for each condi-
tion) on the ratio of PS1 p-CTF to CTF.

FIG. 26 depicts GSK-3a regulates PS1-APP association.
SweAPP N2a cells were treated with either luteolin (20 pm)
GSK-3 inhibitor SB-415286 (20 um) for 4 hrs or transfected
with GSK-3a siRNA. (A) Lysates were immunoprecipitated
by anti-PS1 CTF antibody and analyzed using Western blot.
6E10 antibodies were used to probe the Western blot. (B)
Densitometric analysis of Western blot shows the ratio of APP
to IgG as indicated. At test revealed significant differences
between all treatments and control (P<0.001 with n=3 for
each condition).

FIG. 27 depicts GSK-3a regulation of PS1-APP associa-
tion. SweAPP N2a cells were treated with either luteolin (20
um), GSK-3 inhibitor SB-415286 (20 um) for 4 hrs, or trans-
fected with GSK-3a siRNA. Cell lysates from these treated
cells and GSK-3a siRNA-transfected cells were subse-
quently analyzed by immunoprecipitation/Western blot. (A)
Cell lysates were analyzed by Western blot by 6E10 antibody.
(B) Densitometric analysis of Western blot against anti-actin
antibody-stained control reveals no significant changes in the
ratio of APP to actin as indicated (P>0.05).

FIG. 28 depicts GSK luteolin inhibiting GSK-3 activation
and cerebral amyloidosis in Tg2576 mice. Brain homoge-
nates from Tg2576 mice treated with luteolin (n=5) or vehicle
(PBS, n=5) and analyzed. (A) Western blot of brain homoge-
nates with active and holo anti-GSK-3 antibodies with anti-
actin antibodies as an internal control. (B) A densitometric
graph revealing the ratio of active phosphorylated GSK-3c/f
to holo GSK-3. At test reveals significant reductions in both
active GSK-3a and } isoforms from luteolin treated animals
compared to control (P<0.001).

FIG. 29 show luteolin inhibits GSK-3 activation and cere-
bral amyloidosis in Tg2576 mice. Brain homogenates from
Tg2576 mice treated with luteolin (n=5) or vehicle (PBS,
n=5) and analyzed. (A) Western blot of brain homogenates
were performed using anti-PS1 CTF or NTF antibody. Den-
sitometric analysis produces the ratio of (B) PS1 CTF or (C)
PS1 NTF to actin (internal control). At test shows significant
reductions in PS1 CTF levels with luteolin treatment
(P<0.001), but not for PS1 NTF levels (P>0.05).

FIG. 30 is a cross sectional image of Tg2576 mouse brain
after immunochemistry staining analysis. Tg2576 mice were
treated with a PBS control or luteolin (20 mg/kg) for 30 days,
before sacrifice. Brain sections were taken from indicated
region and stained for phosphorylated GSK-3a/p.

FIG. 31 is a cross sectional image of Tg2576 mouse brain
after immunochemistry staining analysis. Tg2576 mice were
treated with a PBS control or luteolin (20 mg/kg) for 30 days,
before sacrifice. Brain sections were taken from indicated
region and stained for phosphorylated GSK-3a/p.

FIG. 32 is a cross sectional image of Tg2576 mouse brain
after immunochemistry staining analysis. Tg2576 mice were
treated with a PBS control or luteolin (20 mg/kg) for 30 days,
before sacrifice. Brain sections were taken from indicated
region and stained for phosphorylated GSK-3a/p.

FIG. 33 is a cross sectional image of Tg2576 mouse brain
after immunochemistry staining analysis. Tg2576 mice were
treated with a PBS control or luteolin (20 mg/kg) for 30 days,
before sacrifice. Brain sections were taken from indicated
region and stained for phosphorylated GSK-3a/p.

FIG. 34 is a blot depicting luteolin administration abro-
gates APP-PS1 interaction and indicating luteolin inhibits
GSK-3 activation and cerebral amyloidosis in Tg2576 mice.
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Homogenates were immunoprecipitated by anti-PS1 CTF
antibody and subjected to 6E10-probed Western blot. After
administration of luteolin, APP signals disappear or drop
sharply, indicating APP cannot adequately bind to PS1.

FIG. 35 is a blot showing luteolin administration does not
impact APP precipitation. Homogenates were immunopre-
cipitated using 6E10 antibody and subjected to 6E10-probed
Western blot. Administration of luteolin does not impact APP
signals. Approximately 12 kD band may represent oligomeric
form of amyloid.

FIG. 36 is a graph of soluble and insoluble Af; 4o 4»
peptides from homogenates analyzed by ELISA. For AP
ELISA, data are represented as picograms of peptide present
in milligrams of total protein. Luteolin treatment results in
markedly reduced soluble AB, ., 4. levels, 25% and 49%,
respectively.

FIG. 37 is a graph of soluble and insoluble Af; 44 4»
peptides from homogenates analyzed by ELISA. For AP
ELISA, data are represented as picograms of peptide present
in milligrams of total protein. No significant reductions in
insoluble Af isoforms following treatment were observed.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Amyloid diseases, such as Alzheimer’s Disease, Hunting-
ton’s Disease, and type II diabetes, are debilitating diseases
resulting from cellularly processed protein agglomerates.
Flavonoids were found to selectively inhibit GSK-3 activity,
preventing PP1 and PS-1 phosphorylation and inactivating
gamma secretase. The flavonoids attenuate A} generation and
possesses the ability to protect against the multiple arms of
AD pathology. Flavonoids also efficiently inhibit proper asso-
ciation of the y-secretase complex, through increased phos-
phorylation of presenilin 1 (PS1), preventing APP processing
and inhibit the activity of GSK-3, thereby preventing tau
hyperphosphotrylation.

Sixteen (83/89) Tg2576 mice (Taconic, Germantown,
N.Y.) were used; 8 mice received luteolin, and the other 8
received phosphate buffered saline (PBS). Beginning at 8
months of age, Tg2576 mice were intraperitoneally injected
with luteolin (20 mg/kg) or PBS daily for 30 days based on
previously described methods (39). These mice were then
sacrificed at 9 months of age for analyses of AP levels and AP
load in the brain according to previously described methods
(59). Animals were housed and maintained in the College of
Medicine Animal Facility at the University of South Florida
(USF), and all experiments were in compliance with proto-
cols approved by the USF Institutional Animal Care and Use
Committee.

Western Blot and Immunoprecipitation

Cultured cells or mouse brain were lysed in ice-cold lysis
buffer described above, and an aliquot corresponding to 50 pig
of'total protein was electrophoretically separated using 12%
Tris-HCl or 16.5% Tris-tricine gels. Electrophoresed proteins
were then transferred to PVDF membranes, washed in dH,O,
and blocked for 1 hr at ambient temperature in Tris-buffered
saline (TBS; Bio-Rad) containing 5% (w/v) non-fat dry milk.
After blocking, membranes were hybridized for 1 hr at ambi-
ent temperature with various primary antibodies. Membranes
were then washed 3x for 5 min each in dH,O and incubated
for 1 hr at ambient temperature with the appropriate HRP-
conjugated secondary antibody (1:1,000). Antibodies were
obtained against the amino-terminus and carboxyl-terminus
of PS1 (Chemicon, Temecula, Calif.), amino-terminus and
carboxyl-terminus of APP (22C11), actin (Roche, Basel,
Switzerland), Af (6E10, 48G) (Signet Laboratories,
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Dedham, Mass.), phosphor-GSK3a. (ser’’, clone BK202)
(Upstate, Lake Placid, N.Y.), phospho-GSK3a/f
(pTyr?"®21%) (Sigma), phospho-GSK-3f (Ser”) (Sigma) and
total GSK-3a/f (Sigma). All antibodies were diluted in TBS
containing 5% (w/v) of non-fat dry milk Blots were devel-
oped using the luminol reagent (Pierce Biotechnology). Den-
sitometric analysis was done as previously described using a
FluorS Multiimager with Quantity One™ software (39)
Immunoprecipitation was performed for detection of sAPP-
a, sAPP-p and A by incubating 200 ug of total protein of
each sample with various sequential combinations of 6E10
(1:100) and/or 22C11 (1:100) antibodies overnight with
gentle rocking at 4° C., and 10 ul. of 50% protein
A-Sepharose beads were then added to the sample (1:10;
Sigma) prior to gentle rocking for an additional 4 hrs at 4° C.
Following washes with 1x cell lysis buffer, samples were
subjected to Western blot as described above. Antibodies used
for Western blot included the APP-carboxyl-terminal anti-
body (1:50)), amino-terminal APP antibody (clone 22C11),
or 6E10 (1:1,000), or actin antibody (1:1,500; as an internal
reference control). y-secretase activity was quantified in cell
lysates using available kits based on secretase-specific pep-
tides conjugated to fluorogenic reporter molecules.

ELISA

Cultured cells were lysed in ice-cold-lysis buffer (20 mM
Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1%
v/v Triton X-100, 2.5 mM sodium pyropgosphate, 1 mM
B-glycerolphosphate, 1 mM Na,VO,, 1 ng/mL leupeptin, 1
mM PMSF). Mouse brains were isolated under sterile condi-
tions on ice and placed in ice-cold lysis buffer. Brains were
then sonicated on ice for approximately 3 min, allowed to
stand for 15 min at4° C., and centrifuged at 15,000 rpm for 15
minAf, ,, 4, ELISA kits were obtained from IBL-American
(Minneapolis, Minn.). AB; 4, 4, species were detected by
acid extraction of brain homogenates in 5 M guanidine buffer
(39), followed by a 1:10 dilution in lysis buffer. Soluble
AP, _40, 4o were directly detected in cultured cell lysates or
brain homogenates prepared with lysis buffer described
above by a 1:4 or 1:10 dilution, respectively. AR, 4, 4, Was
quantified in these samples using the A, ,, 4, ELISA kits in
accordance with the manufacturer’s instructions, except that
standards included 0.5 M guanidine buffer in some cases.
Luteolin Inhibits A, 4, 4, Generation from SweAPP N2a
Cells and Tg2576 Mouse-Derived Primary Neuronal Cells

SweAPP N2a cells and primary neuronal cells derived
from Tg2576 mice were treated with varying doses of luteolin
to examine luteolin’s effect on APP proteolysis. Cellular
extracts were collected and analyzed using immunoprecipi-
tation (IP), Western blot, and ELISA. Luteolin (>95% purity
by HPLC), (Sigma, St Louis, Mo.), effectively reduced
AP, _40, 42 production in either cell line in a dose dependent
manner, shown in FIGS. 1 through 2(B) and 5 through 6(B),
and abrogated Af, ;4> peptide generation >70% and >85%
at doses of 20 and 40 uM, respectively. See FIGS. 1 through
2(B) and 5 through 6(B). SweAPP N2a and primary Tg2576-
derived neuronal cells CTF profiles were analyzed following
luteolin treatment to determine at which level luteolin
impacts amyloid processing. As illustrated in FIGS. 3 though
4(B) and 7 though 8(B), Western blot analysis shows a dose
dependent accumulation of both @ and § CTFs, approxi-
mately 2-3 fold increases in either cell line.

Due to the implications on y-secretase activity, luteolin’s
effect on Swe APP N2a cells was analyzed using a fluoromet-
ric assay for y-cleavage. Luteolin lowered y-secretase cleav-
age activity in both a dose and time dependent fashion,
depicted in FIGS. 9(A) through 10(B). These dose and time
dependent decreases in y-secretase cleavage activity correlate

25

30

40

45

10

with decreases in total A generation, seen in FIGS. 9(A)
through 10(B), which suggests that luteolin exerts its anti-
amyloidogenic effects through down-regulation of y-secre-
tase activity.
Luteolin Selectively Inactivates GSK-3c/ff in SweAPP N2a
Cells and Tg2576 Mouse-Derived Primary Neuronal Cells
The effect luteoline had on a variety of proteins related to
and/or required for proper functioning of the y-secretase com-
plex was evaluated to establish the mechanism whereby
Iuteolin modulates y-secretase activity and subsequent AR
generation. Luteolin (20 uM) increased the levels of serine
21-phosphorylated, inactive GSK-3a. isoforms in both Swe-
APP N2a and primary Tg2576-derived neuronal cells,
depicted in FIGS. 12 through 18. However, no significant
changes were observed in overall expression of either
GSK3-a or by Western blot, confirming that this phenom-
enon most likely occurs at the post-translational or protein
stage of this kinase. See, FIGS. 12 through 18. This increase
in GSK-3a serine 21 residue phosphorylation-mediated inac-
tivation continued through 3 hrs, shown in FIGS. 13 and 17,
while the levels of tyrosine 279 phosphorylated active GSK-
3o isoforms concurrently decreased in time-dependent man-
ner, shown in FIGS. 13 and 17). More to the point, these
time-dependent decreases in phospho-tyrosine 279 active
GSK-3a are quite congruent with the increases seen with
phospho-serine 21 inactive isoforms. See, FIGS. 12 through
18. FIGS. 14 and 18 indicate abrupt decreases in active phos-
phorylated isoforms, with concurrent increases in inactive
phosphorylated isoforms within 60 minutes of luteolin treat-
ment. Following 2 hours of luteolin treatment, phospho-ty-
rosine 216 GSK-3a. active levels decline. Therefore, luteolin
affects GSK-30/p signaling and confirms that this signaling
is a potential upstream event required for modulation of
y-secretase activity.

Example 1

GSK-3 Inhibition Alters PS1
Processing/Phosphorylation in SweAPP N2a Cells

Cultured cells or mouse brain were lysed in ice-cold lysis
buffer described above, and an aliquot corresponding to 50 pig
of'total protein was electrophoretically separated using 12%
Tris-HCl or 16.5% Tris-tricine gels. Electrophoresed proteins
were then transferred to PVDF membranes, washed in dH,O,
and blocked for 1 hr at ambient temperature in Tris-buffered
saline (TBS; Bio-Rad) containing 5% (w/v) non-fat dry milk.
After blocking, membranes were hybridized for 1 hr at ambi-
ent temperature with various primary antibodies. Membranes
were then washed 3x for 5 min each in dH,O and incubated
for 1 hr at ambient temperature with the appropriate HRP-
conjugated secondary antibody (1:1,000). All antibodies
were diluted in TBS containing 5% (w/v) of non-fat dry milk.
Blots were developed using the luminol reagent (Pierce Bio-
technology). Densitometric analysis was done as previously
described using a FluorS Multiimager with Quantity One™
software. Immunoprecipitation was performed for detection
of sAPP-a, sAPP-f and A by incubating 200 pg of total
protein of each sample with various sequential combinations
of 6E10 (1:100) and/or 22C11 (1:100) antibodies overnight
with gentle rocking at 4° C., and 10 puL of 50% protein
A-Sepharose beads were then added to the sample (1:10;
Sigma) prior to gentle rocking for an additional 4 hrs at 4° C.
Following washes with 1x cell lysis buffer, samples were
subjected to Western blot as described above. Antibodies used
for Western blot included the APP-carboxyl-terminal anti-
body (1:50)), amino-terminal APP antibody (clone 22C11),
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or 6E10 (1:1,000), or actin antibody (1:1,500; as an internal
reference control). y-secretase activity was quantified in cell
lysates using available kits (R&D Systems, Minneapolis,
Minn.). based on secretase-specific peptides conjugated to
fluorogenic reporter molecules.

FIGS. 19(A) through 23 depict the Western blot analysis of
carboxyl-terminal portions of PS1 reveals three distinct
bands. The two bands of highest molecular weight, approxi-
mately 20 kD and 18 kD in size, represent phosphorylated
PS1 CTFs with a smaller 16 kD band representing the more
common CTF product indicative of PS1 endoproteolytic
cleavage. Following SweAPP N2a cell treatment with luteo-
lin, PS1 CTF phosphorylation increases. Phospho-PS1 CTF
to PS1 CTF ratios differ significantly with luteolin treatment,
both dose and time-dependently, depicted in FIG. 19(A)
through (C), and correlate with the dose and time-dependent
decreases in Af3; 4, 4> generation.

To confirm that the 20 kD and 18 kD bands were phospho-
rylated PS1 isoforms, SweAPP N2a cells were treated with
Iuteolin (20 uM) prior to lysis and cell lysates incubated with
calf intestine alkaline phosphatase (CIAP) (Fermentas,
Hanover, Md.), to dephosphorylate any potential phosphory-
lated proteins, to eliminate skewing of electrophorectic
mobilities. Following 30 minutes of incubation, the 20 kD
band is not evident in the CIAP treated lysates, seen in FIGS.
21(A) through 22, and the 18 kD band reduced while endog-
enous CTF, 16 kD, appears to accumulate. When compared to
lysates incubated with only reaction buffer, phosphorylated
residues decrease in a time dependent manner, showing by the
20 kD CTF:16 kD CTF. See FIGS. 21(A) and (B). While
Iuteolin treatment influenced PS1 CTF species, luteolin had
no significant effect on either full-length PS1 or PS1 NTF
protein levels. See FIGS. 23(A) and (B). Luteolin affects PS1
phosphorylation and may indicate a means by which y-secre-
tase activity may be regulated.

To determine if this phenomenon was specifically attribut-
able to luteolin treatment or more generally in regards to
GSK-3 inhibition, SweAPP N2a cells were treated with a
range of doses of the GSK-3 inhibitor SB-415286 (BIO-
MOL®, Plymouth Meeting, Pa.). See FIG. 24(A). Alterations
in phospho-PS1 CTF:PS1 CTF ratios were similar to prior
experiments and congruent decreases in Af, ;. 4, generation
with SB-415286 treatment were confirmed. FIG. 24(B).
GSK-3a and f} was successfully knocked-down (>70%, data
not shown) with siRNA in SweAPP N2a cells, substantiating
the role of GSK-3c in this luteolin-mediated PS1 processing.
GSK-3a siRNA transfected cells exhibit significantly higher
phosphorylated PS1 isoforms as compared to GSK-3p
siRNA or mock transfectants, shown in FIG. 25(A);
P<0.001). Similar differences were observed when compar-
ing the level of PS1 phosphorylation in luteolin treated (20
uM) cells to that of GSK-3f siRNA or mock transfectants.
See FIG. 25(B); P<0.001), illustrating GSK-3a regulates PS1
CTF phosphorylation and that the 20 kD phospho-PS1 CTF
band represents a less active or non-amyloidogenic form of
y-secretase.

Example 2

GSK-3a Regulates PS1-APP Association in
SweAPP N2a Cells

Cell lysates of luteolin-treated SweAPP N2a cells were
immunoprecipitated by PS1 antibody and probed for APP to
clarify how phospho-PS1 CTF isoforms may regulate
y-secretase activity, seen in FIGS. 26(A) through 27(B). As
illustrated in FIGS. 26(A) and (B), the APP-PS1 association
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is disrupted by luteolin, SB-415286 treatment, and GSK-3a
siRNA. This treatment-mediated disruption has no correla-
tion to full-length APP levels, as seen in FIGS. 27(A) and (B),
indicating treatment has little effect on APP expression/trat-
ficking. Thus, GSK-3a or, more specifically, downstream
phosphorylation of the PS1 CTF plays an essential role in
regulating the association of y-secretase complex with its
APP substrate.

Example 3

Luteolin Treatment Inhibits GSK-3 Activation and
Results in Reduction of Cerebral Ap Levels in
Tg2576 Mice

Eight month-old Tg2576 mice were treated with 20 mg/kg
Iuteolin administered by daily intraperitoneal injection for 30
days to validate the above findings in vivo. Mice were anes-
thetized with isofluorane and transcardinally perfused with
ice-cold physiological saline containing heparin (10 U/mL).
Brains were rapidly isolated and quartered using a mouse
brain slicer. The first and second anterior quarters were
homogenized for Western blot analysis, and the third and
fourth posterior quarters were used for microtome or cryostat
sectioning. Brains were then fixed in 4% paraformaldehyde in
PBS at 4° C. overnight and routinely processed in paraffin in
a core facility at the Department of Pathology (USF College
of Medicine). Five coronal sections from each brain (5-um
thickness) were cut with a 150-um interval. Sections were
routinely deparaffinized and hydrated in a graded series of
ethanol prior to pre-blocking for 30 min at ambient tempera-
ture with serum-free protein block. GSK-30/ immunohis-
tochemical staining was performed using anti-phospho-
GSK-3/0/p (pTyr*’?'°) (Sigma, St. Louis, Mo.) antibody
(1:50) in conjunction with the VectaStain Elite™ ABC kit
coupled with diaminobenzidine substrate. Phospho-GSK-
30/p-positive neuronal cells were examined under bright-
field using an Olympus BX-51 microscope.

Brain homogenates from these mice were subsequently
analyzed by immunoprecipitation, Western blot, and ELISA,
seen in FIGS. 28(A) through 37. As shown in FIGS. 28(A)
and 28(B), both GSK-30/p active isoforms from the homo-
genates of luteolin treated mice are reduced when compared
to control. Moreover, ratios of each phosphorylated GSK-3
isoform to its respective holo protein revealed a significant
decrease in activation with treatment (P<0.001). See FIGS.
28(a) and 28(B). These decreases in activation also appeared
in the immunohistochemical analysis of GSK-3a/f activity
in neurons of the CA1 region of the hippocampus and regions
of'the cingulate cortex. See FIGS. 30 through 33. Western blot
analysis of PS1 from treated mice shows significantly lower
levels of PS1 processing, comparing CTF to actin ratios
(P<0.001). See FIGS. 29(A) and (C).

Brain homogenates were immunoprecipitated by PS1 anti-
body and probed for APP to confirm the proposed mecha-
nism. Luteolin treatment effectively abolished PS1-APP
association, seen in FIG. 34. Also, no significant changes in
holo APP expression were observed following treatment and
a potential decrease in oligomeric forms of A even detected
as illustrated in FIG. 35. To assess this decrease, ELISA was
conducted on both soluble and insoluble AR, 4, 4,- See FIGS.
34 and 35. Luteolin treatment markedly reduced soluble iso-
forms of AR, 4, 45 by 25% and 49%, respectively, depicted in
FIG. 34, but no such reductions in insoluble A} isoforms were
identified, seen in FIGS. 36 and 37.

GSK-3a inhibition has been shown to promote the phos-
phorylation of the CTF of PS1, whether achieved by pharma-
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cological means or by genetic silencing. This phosphoryla-
tion subsequently disrupts the enzyme-substrate association
with APP. During in vitro validation, significant increases in
PS1 CTF phosphorylation (20 kD isoforms) was observed
during luteolin, SB-415286, and GSK-3a. RNAI treatment,
which act with similar potency (luteolin and SB-415286) and
efficacy. See FIGS. 24(A) through 25(B). Both in vitro and in
vivo analysis reveal significant reductions in APP co-immu-
noprecipitated with PS1 following treatment, as seen in FIGS.
26(A) through 27(B) and 34 through 33. GSK-3a inhibition
does notappear to phosphorylate full-length PS1 and does not
affect endoproteolytic cleavage based on PS1 NTF analysis,
as seen in FIGS. 23(A) and (B). Although phospho-PS1 CTFs
was not detected in vivo, reductions in the 16 kD PS1 CTF
bands, seen in FIGS. 29(A) through (C), were detected, which
are indicative of a more highly active, amyloidogenic y-secre-
tase complex. Therefore, these compounds affect y-secretase
at the level of the CTF of PS1. There are some obvious
complexities to the mechanism of dimerization of PS1 along
with subsequent association with other essential y-secretase
components such as nicastrin, which recent studies suggest
may function as the y-secretase substrate receptor.

The presence of phosphorylated PS1 CTFs correspond
with reduction of Af generation and accumulation of the
p-CTF of APP, as was observed following luteolin treatment.
See FIGS. 1 through 10(B). The accumulation p-CTFs fol-
lowing luteolin treatment is a fraction of $-CTF seen after
direct y-secretase inhibitor treatment (data not shown). In
view of this finding, selective GSK-3 inactivation is a less
toxic, more regulative, substrate-specific mode of y-secretase
inhibition. Earlier studies routinely employed phorbol-12,13-
dibutyrate (PDBu), a potent PKC activator, as their phospho-
rylating agent. Thus, luteolin was tested for similar PKC
activation, rather than a GSK-3 inhibitor. Co-treatment of
SweAPP N2a cells with luteolin or SB-415286 and the PKC
inhibitor GF109203X had no effect on GSK-3 inhibition
(data not shown). Minor decreases in 20 kD and 18 kD phos-
pho-PS1 CTF isoforms following GF109203X treatment,
indicate PKC may play a part either in the downstream sig-
naling mechanism or by directly phosphorylating the PS1
CTF. Additionally, there are no indications GSK-3a inhibi-
tion affects non-amyloidogenic processing of APP, since
luteolin, SB-415286, and GSK-3a. RNAI treatment have no
effect on the maturation of TACE, ADAMI10, or sAPPa.
release (data not shown), which are all strongly associated
with PKC activation. This data indicates GSK-3a is an
upstream regulator of PS1 CTF phosphorylation and conse-
quently of y-secretase activity.

Luteolin selectively inactivates GSK-3a isoforms over 8
isoforms, shown in FIGS. 11 through 18, as luteolin does not
inhibit active GSK-3f isoforms at about 2 hrs, depicted in
FIGS. 13 and 17, compared to control (data not shown).
However, active GSK-3aisoforms are more timely and effec-
tively reduced by luteolin treatment, depicted in FIGS. 13 and
17, indicating luteolin differs from other GSK-3 inhibitors
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due to its selectivity (including SB-415286). -catenin also
remains unaffected by luteolin treatment, which may imply
that this selective GSK-3 inhibition can circumvent the poten-
tial toxicity of more general GSK-3 inhibitors (data not
shown). Furthermore, there is a clear correlation between
increases in inactive and decreases in active GSK-3a., seen in
FIGS. 14 and 18, following treatment, shows that luteolin
affects the positive feedback loop of GSK-3 activation by
inactivating the PP1 phosphatase.

Luteolin treatment markedly reduces both soluble
AB) 40, 4 isoforms in vivo, seen in FIGS. 24 and 35, illustrat-
ing the anti-amyloidogenic agent-effect of luteoline. No
changes in insoluble AB,_,, 4, isoforms were observed, seen
in FIGS. 24 and 35, however this result is expected given the
age and consequent low plaque burden of these Tg2576 mice.
Luteolin potentially reaches its molecular target by passive
diffusion through cell membranes, explaining the rapid onset
of GSK-3a inhibition observed following luteolin treatment,
depicted in FIGS. 11, 12, 15, and 16, and may indicate favor-
able blood-brain barrier permeability. See FIGS. 26(A)
through 35.

It is also to be understood that the following claims are
intended to cover all of the generic and specific features of the
invention herein described, and all statements of the scope of
the invention which, as a matter of language, might be said to
fall therebetween. Now that the invention has been described,

What is claimed is:

1. A method of treating Alzheimer’s disease comprising:

administering a therapeutically effective amount of lutoe-

lin to a patient suffering from Alzheimer’s disease;

wherein the luteolin is administered at a dosage of 20

mg/kg of body weight.

2. A method of treating Alzheimer’s disease comprising:

administering an effective amount of lutoelin to a patient

suffering from Alzheimer’s disease;

wherein the luteolin is administered at a plasma concen-

tration of 20 uM, 40 uM, or at a range of between 2.5 uM
to 80 uM.

3. A method of treating Alzheimer’s disease comprising:

administering a therapeutically effective amount of a

GSK-3 inhibitor to a patient suffering from Alzheimer’s
disease, wherein the GSK-3 inhibitor is selected from
the group consisting of GSK-3f3 siRNA, and lutoelin;

a range of between 2.5 uM to 80 uM, or at a dosage of 20

mg/kg body weight.

4. A method of treating Alzheimer’s disease comprising:

inactivating glycogen synthase kinase 3 alpha (GSK-3a)

activity by administering a therapeutically effective
amount of lutoelin to a patient suffering from Alzhe-
imer’s disease;

wherein the flavonoid compound is administered at a

plasma concentration of 20 uM, 40 uM, at a range of
between 2.5 uM to 80 uM, or at a dosage of 20 mg/kg of
body weight.
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