34 research outputs found
Electro-Coalescence Fireworks
Electro-coalescence is the application of an electric field onto coalescing
fluid bodies. The following fluid dynamics videos show a droplet coalescing
into a fluid bath while embedded into a viscous medium and subject to a very
high electric field. The concentration of electric stresses at the apex of the
droplet cause it to break apart. The droplet is glycerol and the viscous medium
is silicone oil
Shear thinning behavior of cerebrospinal fluid with elevated protein or cellular concentration
Introduction: Cerebrospinal fluid (CSF) plays a crucial role in the maintenance of the central nervous system (CNS) by cushioning the brain, providing nutrients, removing interstitial waste, and maintaining homeostasis. Flow characteristics of CSF may significantly contribute to brain dynamics, injury mechanics, disease pathogenesis, and the functionality of the glymphatic system. Conventionally, CSF is considered to have very similar rheological properties to water and Newtonian behavior of CSF has been assumed, despite its complex composition, which can include proteins like albumin and tau, as well as cellular content such as blood.Methods: Recent advances in rheological techniques allow for more accurate quantification of CSF characteristics and behavior. Here, we present an updated rheological characterization of CSF, including the impact of its cellular and proteinaceous constituents. CSF samples were tested for protein and cellular concentration. Using precision torsional rheometry and recently developed extensional rheology techniques, we show that CSF with elevated cellular or protein concentration exhibits significant non-Newtonian behavior, especially at low shear rates.Results: Like other biological fluids, CSF with elevated cellular or protein concentration exhibits shear thinning behavior until reaching a steady state viscosity of approximately 1 mPa·s at shear rates greater than 10 s-1. This shear thinning behavior becomes more pronounced with increasing concentration of its constituents. In extensional flow, CSF exhibited weakly non-Newtonian behavior, with an average extensional relaxation time of 0.14 ms. The extensional relaxation time is positively correlated to cellular concentration and significantly increased with elevated protein.Discussion: Our results enhance the understanding of CSF rheology with significant implications for the analysis, modeling, and treatment of CSF-related processes
A thermodynamic unification of jamming
Fragile materials ranging from sand to fire-retardant to toothpaste are able
to exhibit both solid and fluid-like properties across the jamming transition.
Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to
flow under conditions that still remain unknown. Here we quantify jamming via a
thermodynamic approach by accounting for the structural ageing and the
shear-induced compressibility of dry sand. Specifically, the jamming threshold
is defined using a non-thermal temperature that measures the 'fluffiness' of a
granular mixture. The thermodynamic model, casted in terms of pressure,
temperature and free-volume, also successfully predicts the entropic data of
five molecular glasses. Notably, the predicted configurational entropy avoids
the Kauzmann paradox entirely. Without any free parameters, the proposed
equation-of-state also governs the mechanism of shear-banding and the
associated features of shear-softening and thickness-invariance.Comment: 16 pgs double spaced. 4 figure
Capillary filling with wall corrugations] Capillary filling in microchannels with wall corrugations: A comparative study of the Concus-Finn criterion by continuum, kinetic and atomistic approaches
We study the impact of wall corrugations in microchannels on the process of
capillary filling by means of three broadly used methods - Computational Fluid
Dynamics (CFD), Lattice-Boltzmann Equations (LBE) and Molecular Dynamics (MD).
The numerical results of these approaches are compared and tested against the
Concus-Finn (CF) criterion, which predicts pinning of the contact line at
rectangular ridges perpendicular to flow for contact angles theta > 45. While
for theta = 30, theta = 40 (no flow) and theta = 60 (flow) all methods are
found to produce data consistent with the CF criterion, at theta = 50 the
numerical experiments provide different results. Whilst pinning of the liquid
front is observed both in the LB and CFD simulations, MD simulations show that
molecular fluctuations allow front propagation even above the critical value
predicted by the deterministic CF criterion, thereby introducing a sensitivity
to the obstacle heigth.Comment: 25 pages, 8 figures, Langmuir in pres
Capillary filling with pseudo-potential binary Lattice-Boltzmann model
We present a systematic study of capillary filling for a binary fluid by
using a mesoscopic lattice Boltzmann model for immiscible fluids describing a
diffusive interface moving at a given contact angle with respect to the walls.
The phenomenological way to impose a given contact angle is analysed.
Particular attention is given to the case of complete wetting, that is contact
angle equal to zero. Numerical results yield quantitative agreement with the
theoretical Washburn law, provided that the correct ratio of the dynamic
viscosities between the two fluids is used. Finally, the presence of precursor
films is experienced and it is shown that these films advance in time with a
square-root law but with a different prefactor with respect to the bulk
interface.Comment: 13 pages, 8 figures, accepted for publication on The European journal
of physics
IMECE2005-81841 RUPTURE PROCESS DURING DROP COALESCENCE
ABSTRACT During the coalescence of a drop with a planar interface, a hole is generated in a microscopic film that separates the drop from the interface. An experimental study has been performed to investigate the time dependent behavior of the radius of the hole generated during coalescence. The study consisted of placing drops of various sizes and physical properties on a planar interface. The coalescence process was recorded from underneath the interface with the aid of a high speed digital camera and a prism. The experiment captured two separate processes, film rupture and the closing of the hole. During the film rupture, the hole radius demonstrated a power law time dependence. Dimensional analysis showed the percentage of time the hole used to reach its maximum radius was approximately constant for all drops. Moreover, all dimensionless drop rupture radii and times fit onto a single master curve and were independent of their physical properties during the opening. However during the closing of the hole, the dimensionless time and radii did not fit a master curve analogous to the hole rupture. The closing of the hole is an entirely different event from the opening and is governed by different parameters
Effects of compressibility and rarefaction on gaseous flows in microchannels
A two-dimensional flow and heat transfer model is used to study gas compressibility and rarefaction in microchannels assuming slip flow regime. The compressible forms of momentum and energy equations are solved with slip velocity and temperature jump boundary conditions in a parallel plate channel for both uniform wall temperature and uniform wall heat flux boundary conditions. The numerical methodology is based on a control volume finite difference scheme. To verify the model, the mass flow rate was compared with the experimental results of helium through a microchannel. Also, the normalized friction coefficient was compared with the experiments for nitrogen and helium flow in a microchannel. Finally, the axial pressure distribution was compared with the experimental results for nitrogen flow in a microchannel. The computations were performed for a wide range of Knin, Re, dimensionless distance from the entrance, and for the wall parameters, q* and T* , to study the effects of rarefaction and compressibility. It was found that Nusselt number and friction coefficient were substantially reduced for slip flows compared with the continuum flows. The velocity and temperature distributions were flattened compared with continuum flows and the axial variation of pressure became nonlinear. It was shown that the effect of compressibility was important for higher Reynolds numbers and for lower Reynolds numbers, the effect of rarefaction was significant
Dynamic contact angle measurements on superhydrophobic surfaces
In this paper, the dynamic advancing and receding contact angles of a series of aqueous solutions were measured on a number of hydrophobic and superhydrophobic surfaces using a modified Wilhelmy plate technique. Superhydrophobic surfaces are hydrophobic surfaces with micron or nanometer sized surface roughness. These surfaces have very large static advancing contact angles and little static contact angle hysteresis. In this study, the dynamic advancing and dynamic receding contact angles on superhydrophobic surfaces were measured as a function of plate velocity and capillary number. The dynamic contact angles measured on a smooth hydrophobic Teflon surface were found to obey the scaling with capillary number predicted by the Cox-Voinov-Tanner law, theta(3)(D) proportional to Ca. The response of the dynamic contact angle on the superhydrophobic surfaces, however, did not follow the same scaling law. The advancing contact angle was found to remain constant at theta(A) = 160 degrees, independent of capillary number. The dynamic receding contact angle measurements on superhydrophobic surfaces were found to decrease with increasing capillary number; however, the presence of slip on the superhydrophobic surface was found to result in a shift in the onset of dynamic contact angle variation to larger capillary numbers. In addition, a much weaker dependence of the dynamic contact angle on capillary number was observed for some of the superhydrophobic surfaces tested. (C) 2015 AIP Publishing LLC