14 research outputs found
NARMADA: Need and Available Resource Managing Assistant for Disasters and Adversities
Although a lot of research has been done on utilising Online Social Media
during disasters, there exists no system for a specific task that is critical
in a post-disaster scenario -- identifying resource-needs and
resource-availabilities in the disaster-affected region, coupled with their
subsequent matching. To this end, we present NARMADA, a semi-automated platform
which leverages the crowd-sourced information from social media posts for
assisting post-disaster relief coordination efforts. The system employs Natural
Language Processing and Information Retrieval techniques for identifying
resource-needs and resource-availabilities from microblogs, extracting
resources from the posts, and also matching the needs to suitable
availabilities. The system is thus capable of facilitating the judicious
management of resources during post-disaster relief operations.Comment: ACL 2020 Workshop on Natural Language Processing for Social Media
(SocialNLP
Does emotion influence the use of auto-suggest during smartphone typing?
Typing based interfaces are common across many mobile applications, especially messaging apps. To reduce the difficulty of typing using keyboard applications on smartphones, smartwatches with restricted space, several techniques, such as auto-complete, auto-suggest, are implemented. Although helpful, these techniques do add more cognitive load on the user. Hence beyond the importance to improve the word recommendations, it is useful to understand the pattern of use of auto-suggestions during typing. Among several factors that may influence use of auto-suggest, the role of emotion has been mostly overlooked, often due to the difficulty of unobtrusively inferring emotion. With advances in affective computing, and ability to infer user's emotional states accurately, it is imperative to investigate how auto-suggest can be guided by emotion aware decisions. In this work, we investigate correlations between user emotion and usage of auto-suggest i.e. whether users prefer to use auto-suggest in specific emotion states. We developed an Android keyboard application, which records auto-suggest usage and collects emotion self-reports from users in a 3-week in-the-wild study. Analysis of the dataset reveals relationship between user reported emotion state and use of auto-suggest. We used the data to train personalized models for predicting use of auto-suggest in specific emotion state. The model can predict use of auto-suggest with an average accuracy (AUCROC) of 82% showing the feasibility of emotion-aware auto-suggestion
Emotion detection from touch interactions during text entry on smartphones
There are different modes of interaction with a software keyboard on a smartphone, such as typing and swyping. Patterns of such touch interactions on a keyboard may reflect emotions of a user. Since users may switch between different touch modalities while using a keyboard, therefore, automatic detection of emotion from touch patterns must consider both modalities in combination to detect the pattern. In this paper, we focus on identifying different features of touch interactions with a smartphone keyboard that lead to a personalized model for inferring user emotion. Since distinguishing typing and swyping activity is important to record the correct features, we designed a technique to correctly identify the modality. The ground truth labels for user emotion are collected directly from the user by periodically collecting self-reports. We jointly model typing and swyping features and correlate them with user provided self-reports to build a personalized machine learning model, which detects four emotion states (happy, sad, stressed, relaxed). We combine these design choices into an Android application TouchSense and evaluate the same in a 3-week in-the-wild study involving 22 participants. Our key evaluation results and post-study participant assessment demonstrate that it is possible to predict these emotion states with an average accuracy (AUCROC) of 73% (std dev. 6%, maximum 87%) combining these two touch interactions only
The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package
Abstract
The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project.</jats:p
Recommended from our members
The SunPy Project : Open Source Development and Status of the Version 1.0 Core Package
The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project. © 2020. The Author(s). Published by IOP Publishing Ltd on behalf of the American Astronomical Society
The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package
The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project
