5 research outputs found

    Confirmation of root-knot nematode resistant gene Rmi1 using SSR markers

    Get PDF
    Background: The Root Knot Nematode (RKN) is a serious economic threat to various cultivated crops worldwide. It is a devastating pest of soybean and responsible to cause severe yield loss in Pakistan. The cultivation of resistant soybean varieties against this pest is the sustainable strategy to manage the heavy loss and increase yield. There is an utmost need to identify RKN resistant varieties of soybean against cultivated in Pakistan. The presented study is an attempt to identify and confirm the presence of resistant gene Rmi1 in soybean. Method: Molecular studies have been done using Simple Sequence Repeat (SSR) marker system to identify resistant soybean varieties against Root Knot Nematode (RKN) using fifteen (15) indigenous cultivars and four (4) US cultivars. DNA was isolated, purified, quantified and then used to employ various SSR markers. The amplified product is observed using gel documentation system after electrophoresis.  Results: Diagnostic SSR markers Satt-358 and Satt-492 have shown the presence of Rmi1 gene in all resistance carrying genotypes. Satt-358 amplified the fragment of 200 bp and Satt-492 generated 232 bp bands in all resistant genotypes. This study confirmed the Rmi gene locus (G248A-1) in all internationally confirmed resistant including six (6) native varieties.Conclusion: These investigations have identified six (6) resistant cultivars revealing the effective and informative sources that can be utilized in breeding programs for the selection of RKN resistance soybean genotypes in Pakistan.

    Comparing Genomes of Helicobacter pylori Strains from the High-Altitude Desert of Ladakh, India

    No full text
    The genomic diversity of Helicobacter pylori from the vast Indian subcontinent is largely unknown. We compared the genomes of 10 H. pylori strains from Ladakh, North India. Molecular analysis was carried out to identify rearrangements within and outside the cag pathogenicity island (cag PAI) and DNA sequence divergence in candidate genes. Analyses of virulence genes (such as the cag PAI as a whole, cagA, vacA, iceA, oipA, babB, and the plasticity cluster) revealed that H. pylori strains from Ladakh are genetically distinct and possibly less virulent than the isolates from East Asian countries, such as China and Japan. Phylogenetic analyses based on the cagA-glr motifs, enterobacterial repetitive intergenic consensus patterns, repetitive extragenic palindromic signatures, the glmM gene mutations, and several genomic markers representing fluorescent amplified fragment length polymorphisms revealed that Ladakhi strains share features of the Indo-European, as well as the East Asian, gene pools. However, the contribution of genetic features from the Indo-European gene pool was more prominent

    Confirmation of root-knot nematode resistant gene Rmi1 using SSR markers

    No full text
    Background: The Root Knot Nematode (RKN) is a serious economic threat to various cultivated crops worldwide. It is a devastating pest of soybean and responsible to cause severe yield loss in Pakistan. The cultivation of resistant soybean varieties against this pest is the sustainable strategy to manage the heavy loss and increase yield. There is an utmost need to identify RKN resistant varieties of soybean against cultivated in Pakistan. The presented study is an attempt to identify and confirm the presence of resistant gene Rmi1 in soybean. Method: Molecular studies have been done using Simple Sequence Repeat (SSR) marker system to identify resistant soybean varieties against Root Knot Nematode (RKN) using fifteen (15) indigenous cultivars and four (4) US cultivars. DNA was isolated, purified, quantified and then used to employ various SSR markers. The amplified product is observed using gel documentation system after electrophoresis. Results: Diagnostic SSR markers Satt-358 and Satt-492 have shown the presence of Rmi1 gene in all resistance carrying genotypes. Satt-358 amplified the fragment of 200 bp and Satt-492 generated 232 bp bands in all resistant genotypes. This study confirmed the Rmi gene locus (G248A-1) in all internationally confirmed resistant including six (6) native varieties. Conclusion: These investigations have identified six (6) resistant cultivars revealing the effective and informative sources that can be utilized in breeding programs for the selection of RKN resistance soybean genotypes in Pakistan

    The cag Pathogenicity Island of Helicobacter pylori Is Disrupted in the Majority of Patient Isolates from Different Human Populations

    Get PDF
    The cag pathogenicity island (cag-PAI) is one of the major virulence determinants of Helicobacter pylori. The chromosomal integrity of this island or the lack thereof is speculated to play an important role in the progress of the gastroduodenal pathology caused by H. pylori. We determined the integrity of the cag-PAI by using specific flanking and internally anchored PCR primers to know the biogeographical distribution of strains carrying fully integral cag-PAI with proinflammatory behavior in vivo. Genotypes based on eight selected loci were studied in 335 isolates obtained from eight different geographic regions. The cag-PAI appeared to be disrupted in the majority of patient isolates throughout the world. Conservation of cag-PAI was highest in Japanese isolates (57.1%). However, only 18.6% of the Peruvian and 12% of the Indian isolates carried an intact cag-PAI. The integrity of cag-PAI in European and African strains was minimal. All 10 strains from Costa Rica had rearrangements. Overall, a majority of the strains of East Asian ancestry were found to have intact cag-PAI compared to strains of other descent. We also found that the cagE and cagT genes were less often rearranged (18%) than the cagA gene (27%). We attempted to relate cag-PAI rearrangement patterns to disease outcome. Deletion frequencies of cagA, cagE, and cagT genes were higher in benign cases than in isolates from severe ulcers and gastric cancer. Conversely, the cagA promoter and the left end of the cag-PAI were frequently rearranged or deleted in isolates linked to severe pathology. Analysis of the cag-PAI genotypes with a different biogeoclimatic history will contribute to our understanding of the pathogen-host interaction in health and disease

    The <i>cag</i> pathogenicity island of <i>Helicobacter pylori</i> is disrupted in the majority of patient isolates from different human populations

    No full text
    The cag pathogenicity island (cag-PAI) is one of the major virulence determinants of Helicobacter pylori. The chromosomal integrity of this island or the lack thereof is speculated to play an important role in the progress of the gastroduodenal pathology caused by H. pylori. We determined the integrity of the cag-PAI by using specific flanking and internally anchored PCR primers to know the biogeographical distribution of strains carrying fully integral cag-PAI with proinflammatory behavior in vivo. Genotypes based on eight selected loci were studied in 335 isolates obtained from eight different geographic regions. The cag-PAI appeared to be disrupted in the majority of patient isolates throughout the world. Conservation of cag-PAI was highest in Japanese isolates (57.1%). However, only 18.6% of the Peruvian and 12% of the Indian isolates carried an intact cag-PAI. The integrity of cag-PAI in European and African strains was minimal. All 10 strains from Costa Rica had rearrangements. Overall, a majority of the strains of East Asian ancestry were found to have intact cag-PAI compared to strains of other descent. We also found that the cagE and cagT genes were less often rearranged (18%) than the cagA gene (27%). We attempted to relate cag-PAI rearrangement patterns to disease outcome. Deletion frequencies of cagA, cagE, and cagT genes were higher in benign cases than in isolates from severe ulcers and gastric cancer. Conversely, the cagA promoter and the left end of the cag-PAI were frequently rearranged or deleted in isolates linked to severe pathology. Analysis of the cag-PAI genotypes with a different biogeoclimatic history will contribute to our understanding of the pathogen-host interaction in health and disease
    corecore