24 research outputs found

    Cochlear inflammaging: cellular and molecular players of the innate and adaptive immune system in age-related hearing loss

    Get PDF
    Age-related hearing loss is the most common sensory disorder worldwide that contributes to numerous health conditions in the aging population. Despite its prevalence, current treatments, including hearing aids, are unsatisfactory in improving hearing deficits or slowing or reversing its pathophysiology. Immunosenescence is a key driver of neurodegenerative disease, and a similar mechanism has recently come to attention in age-related hearing loss. Imbalanced levels of cytokines and chemokines contribute to aberrant immune cell activity and a chronic pro-inflammatory microenvironment that may lead to degradation of inner ear structure and function. Macrophages, typically guardians of organ homeostasis, are found to develop dysregulated activity with aging due to unidentified factors, and they interact with other components of the innate immune system to damage sensory hair cells, synapses, neurons, and other structures of the inner ear critical to sensory signal transmission. They also increasingly trigger the inflammasome, a protein complex involved in inflammatory cell death, and the complement cascade, to perpetuate a cycle of inflammation and cellular damage in the cochlea, resulting in hearing loss. Senescence in certain T cell populations have indicated a role of adaptive immunity in age-related hearing loss as well. Deciphering the mechanisms of immune dysregulation is a critical first step in producing targeted therapies for hearing loss. This brief review describes the current and emerging research surrounding the dysregulation of the innate and adaptive immune systems in age-related hearing loss and its parallels with other neurodegenerative diseases

    Macrophage recruitment and epithelial repair following hair cell injury in the mouse utricle

    Get PDF
    The sensory organs of the inner ear possess resident populations of macrophages, but the function of those cells is poorly understood. In many tissues, macrophages participate in the removal of cellular debris after injury and can also promote tissue repair. The present study examined injury-evoked macrophage activity in the mouse utricle. Experiments used transgenic mice in which the gene for the human diphtheria toxin receptor (huDTR) was inserted under regulation of the Pou4f3 promoter. Hair cells in such mice can be selectively lesioned by systemic treatment with diphtheria toxin (DT). In order to visualize macrophages, Pou4f3-huDTR mice were crossed with a second transgenic line, in which one or both copies of the gene for the fractalkine receptor CX3CR1 were replaced with a gene for GFP. Such mice expressed GFP in all macrophages, and mice that were CX3CR1GFP/GFP lacked the necessary receptor for fractalkine signaling. Treatment with DT resulted in the death of ~70% of utricular hair cells within seven days, which was accompanied by increased numbers of macrophages within the utricular sensory epithelium. Many of these macrophages appeared to be actively engulfing hair cell debris, indicating that macrophages participate in the process of ‘corpse removal’ in the mammalian vestibular organs. However, we observed no apparent differences in injury-evoked macrophage numbers in the utricles of CX3CR1+/GFP mice vs. CX3CR1GFP/GFP mice, suggesting that fractalkine signaling is not necessary for macrophage recruitment in these sensory organs. Finally, we found that repair of sensory epithelia at short times after DT-induced hair cell lesions was mediated by relatively thin cables of F-actin. After 56 days recovery, however, all cell-cell junctions were characterized by very thick actin cables

    Programmed cell death recruits macrophages into the developing mouse cochlea

    Get PDF
    Programmed cell death (PCD) plays a critical role in the development and maturation of the cochlea. Significant remodeling occurs among cells of the greater epithelial ridge (GER) of Kölliker\u27s organ, leading to tissue regression and formation of the inner sulcus. In mice, this event normally occurs between postnatal days 5-15 (P5-15) and is regulated by thyroid hormone (T3). During this developmental time period, the cochlea also contains a large population of macrophages. Macrophages are frequently involved in the phagocytic clearance of dead cells, both during development and after injury, but the role of macrophages in the developing cochlea is unknown. This study examined the link between developmental cell death in the GER and the recruitment of macrophages into this region. Cell death in the basal GER begins at P5 and enhanced numbers of macrophages were observed at P7. This pattern of macrophage recruitment was unchanged in mice that were genetically deficient for CX3CR1, the receptor for fractalkine (a known macrophage chemoattractant). We found that injection of T3 at P0 and P1 caused GER cell death to begin at P3, and this premature PCD was accompanied by earlier recruitment of macrophages. We further found that depletion of macrophages from the developing cochlea (using CX3CR

    Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons

    Get PDF
    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival

    Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion

    Get PDF
    Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX(3)CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. SIGNIFICANCE STATEMENT It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after selective hair cell lesion. Because these afferent neurons carry sound information from the cochlea to the auditory brainstem, their survival is a key determinant of the success of cochlear prosthetics. Our data suggest that fractalkine signaling in the cochlea is neuroprotective, and reveal a previously uncharacterized interaction between cells of the cochlea and the innate immune system

    Epigallocatechin-3-gallate, a prototypic chemopreventative agent for protection against cisplatin-based ototoxicity

    Get PDF
    AbstractCisplatin-induced ototoxicity is one of the major factors limiting cisplatin chemotherapy. Ototoxicity results from damage to outer hair cells (OHCs) and other regions of the cochlea. At the cellular level, cisplatin increases reactive oxygen species (ROS) leading to cochlear inflammation and apoptosis. Thus, ideal otoprotective drugs should target oxidative stress and inflammatory mechanisms without interfering with cisplatin's chemotherapeutic efficacy. In this study, we show that epigallocatechin-3-gallate (EGCG) is a prototypic agent exhibiting these properties of an effect otoprotective agent. Rats administered oral EGCG demonstrate reduced cisplatin-induced hearing loss, reduced loss of OHCs in the basal region of the cochlea and reduced oxidative stress and apoptotic markers. EGCG also protected against the loss of ribbon synapses associated with inner hair cells and Na+/K+ ATPase α1 in the stria vascularis and spiral ligament. In vitro studies showed that EGCG reduced cisplatin-induced ROS generation and ERK1/2 and signal transducer and activator of transcription-1 (STAT1) activity, but preserved the activity of STAT3 and Bcl-xL. The increase in STAT3/STAT1 ratio appears critical for mediating its otoprotection. EGCG did not alter cisplatin-induced apoptosis of human-derived cancer cells or cisplatin antitumor efficacy in a xenograft tumor model in mice because of its inability to rescue the downregulation of STAT3 in these cells. These data suggest that EGCG is an ideal otoprotective agent for treating cisplatin-induced hearing loss without compromising its antitumor efficacy.</jats:p

    Adenosine A1 receptor protects against cisplatin ototoxicity by suppressing the NOX3/STAT1 inflammatory pathway in the cochlea

    Get PDF
    Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A(1) receptor (A(1)AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A(1)AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser(727) (but not Tyr(701)) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways. R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A(1)AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. SIGNIFICANCE STATEMENT Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A(1) receptor (A(1)AR) by trans-tympanic injections of the agonist R-phenylisopropyladenosine (R-PIA) and showed that it reduced cisplatin-induced inflammation and apoptosis in the rat cochlea and preserved hearing. The mechanism of protection involves suppression of the NOX3 NADPH oxidase enzyme, a major target of cisplatin-induced reactive oxygen species (ROS) generation in the cochlea. ROS initiates an inflammatory and apoptotic cascade in the cochlea by activating STAT1 transcription factor, which is attenuated by R-PIA. Therefore, trans-tympanic delivery of A(1)AR agonists could effectively treat cisplatin ototoxicity

    TARGETING COCHLEAR INFLAMMATION FOR THE TREATMENT OF CISPLATIN OTOTOXICITY

    No full text
    Hearing loss or deafness, in its most serious form, affects an estimated 28 million people in America. One of the forms of hearing loss, known as ototoxicity, refers to damage to the ear (-oto) due to xenobiotics. Cisplatin is the most widely used antineoplastic agent in the treatment of various solid tumors. Cisplatin toxicity can lead to severe effects on the kidneys, nervous system and auditory system which significantly reduce the quality of life of cancer patients. While nephrotoxicity could be alleviated by hydration and diuresis, cisplatin-induced ototoxicity is permanent and there is currently no approved treatment for this condition. Previous studies have shown that the generation of reactive oxygen species (ROS) is a critical event that initiates damage to the outer hair cells (OHCs), stria vascularis (SVA) and spiral ganglion cells (SG) of the cochlea, leading to hearing loss after cisplatin treatment. However, the mechanism(s) underlying the transition from ROS generation to the manifestation of ototoxicity is (are) not clearly defined. Recent studies have also implicated inflammatory pathways in cisplatin-induced cell death. Various transcription factors have been linked to the induction of inflammation mediated by cisplatin in the cochlea. Recent study demonstrate that cisplatin activates signal transducer and activator of transcription 1 (STAT1) a transcription factor implicated in inflammation, which mediates damage to utricular hair cell and could also confer cisplatin-induced hearing loss. The aim of this study is to further define a role of STAT1 in cochlear inflammation and in cisplatin-mediated ototoxicity. Based on preliminary data, we hypothesize that STAT1 plays an integral role in cisplatin-mediated inflammation and hearing loss. Our data show that STAT1 couples ROS to the inflammatory process in the cochlea. The major source of ROS appears to be the NOX3 NADPH oxidase system, knockdown of which by short interfering (si)RNA reduces STAT1 activation by cisplatin and alleviates hearing loss. Activation of STAT1 by cisplatin involves phosphorylation of Serine 727 by mitogen activated protein kinases such as extracellular signal regulated kinase (ERK) 1/2 and p38. Knockdown of STAT1 by trans-tympanic administration of siRNA reduces damage to OHCs and protects against cisplatin-induced hearing loss in rats. STAT1 siRNA attenuates the production of inflammatory mediators, such as tumor necrosis factor- α (TNF-α), and reduces the recruitment of inflammatory cells to the cochlea. Furthermore, inhibition of TNF-α by trans-tympanic administration of etanercept, a clinically used TNF-α antagonist, protects against OHC damage and cisplatin-induced hearing loss. These data suggest that targeting STAT1 or the inflammatory genes it regulates could serve as useful strategies for preventing cisplatin-induced hearing loss and improve the overall quality of life of cancer patients
    corecore