11 research outputs found

    CS 670: Artificial Intelligence

    Get PDF

    Structure, function and mechanism of N-glycan processing enzymes : endo-α-1,2-mannanase and endo-α-1,2-mannosidase

    Get PDF
    While most glycosidases that act on N-linked glycans remove a single sugar residue at a time, endo-α-1,2-mannosidases and endo-α-1,2-mannanases of glycoside hydrolase family GH99 cut within a chain and remove two or more sugar residues. They are stereochemically retaining enzymes that use an enzymatic mechanism involving an epoxide intermediate. Human endo-α-1,2-mannosidase (MANEA) trims glucosylated mannose residues; the endomannosidase pathway provides a glucosidase-independent pathway for glycoprotein maturation. Cell-active MANEA inhibitors alter N-glycan processing and reduce infectivity of dengue virus, demonstrating that MANEA has potential as a host-directed antiviral target. Sequence-related enzymes from gut Bacteroides spp. exhibit endo-α-1,2-mannosidase activity and are a fruitful test bed for structure-guided inhibitor development. The genes encoding the Bacteroides spp. enzymes sit within polysaccharide utilization loci and are preferential endo-α-1,2-mannanases

    High Embedding Capacity and Robust Audio Watermarking for Secure Transmission Using Tamper Detection

    No full text
    Robustness, payload, and imperceptibility of audio watermarking algorithms are contradictory design issues with high‐level security of the watermark. In this study, the major issue in achieving high payload along with adequate robustness against challenging signal‐processing attacks is addressed. Moreover, a security code has been strategically used for secure transmission of data, providing tamper detection at the receiver end. The high watermark payload in this work has been achieved by using the complementary features of third‐level detailed coefficients of discrete wavelet transform where the human auditory system is not sensitive to alterations in the audio signal. To counter the watermark loss under challenging attacks at high payload, Daubechies wavelets that have an orthogonal property and provide smoother frequencies have been used, which can protect the data from loss under signal‐processing attacks. Experimental results indicate that the proposed algorithm has demonstrated adequate robustness against signal processing attacks at 4,884.1 bps. Among the evaluators, 87% have rated the proposed algorithm to be remarkable in terms of transparency

    Role of diffusion-weighted magnetic resonance imaging in the evaluation of vertebral bone marrow lesions

    Get PDF
    Purpose: To evaluate the role of diffusion-weighted magnetic resonance imaging (DW-MRI) in differentiating vertebral marrow pathologies. To determine the sensitivity, specificity, and threshold apparent diffusion coefficient (ADC) values that can aid in the differentiation of malignant from benign bone marrow lesions. Material and methods: This observational study included 100 patients, who underwent MRI examination with a 1.5 Tesla scanner. The ADC values of normal and pathological vertebrae were estimated, and the threshold ADC values were computed by receiver operating characteristic (ROC) analysis. The results were correlated with histopathological diagnosis, clinical follow-up, and other investigations. Statistical analysis was done by employing unpaired two-tailed Student’s t-test and the p-value of < 0.05 was deemed as statistically significant. Results: Vertebral bone marrow lesions had a male predominance and there was a predilection towards thoracic and lumbar vertebrae, with L4 being the commonest. Metastasis was the commonest lesion, followed by spondylodiscitis. The mean ADC value of benign pathologies was significantly greater than malignant pathologies (p < 0.05). The threshold value for the demarcation between benign and malignant pathologies was computed to be 1.21 × 10-3 mm2/s. DW imaging had sensitivity of 100%, specificity of 92.31%, positive predictive value of 87.5%, and negative predictive value of 100%. Conclusions: Vertebral marrow lesions can be differentiated as benign or malignant with good sensitivity and specificity with the help of DW-ADC maps

    A widespread family of oxidoreductive sulfoquinovosidases at the gateway to sulfoquinovose catabolism

    No full text
    The sulfosugar sulfoquinovose (SQ) is produced by photosynthetic plants, algae and cyanobacteria on a scale of 10 billion tonnes per annum. Its degradation, which is essential to allow cycling of its constituent carbon and sulfur, involves specialized glycosidases termed sulfoquinovosidases (SQases), which release SQ from sulfolipid glycoconjugates so it can enter SQ catabolism pathways. However, many SQ catabolic gene clusters lack a gene encoding a classical SQase. Here, we report the discovery of a new family of SQases that use an atypical oxidoreductive mechanism involving NAD+ as a catalytic cofactor. 3D X-ray structures of complexes with SQ and NAD+ provide insight into the catalytic mechanism, which involves transient oxidation at C3. Bioinformatic survey reveals this new family of NAD-dependent SQases occur within sulfoglycolytic and sulfolytic gene clusters that lack classical SQases, and are distributed widely including within Roseobacter clade bacteria, suggesting an important contribution to marine sulfur cycling

    Defining the molecular architecture, metal dependence, and distribution of metal-dependent class II sulfofructose-1-phosphate aldolases

    No full text
    Sulfoquinovose (SQ or 6-deoxy-6-sulfoglucose) is a sulfosugar that is the anionic head group of plant and cyanobacterial sulfolipids: sulfoquinovosyl diacylglycerols. SQ is produced within photosynthetic tissues, forms a major terrestrial reservoir of biosulfur, and is an important species within the biogeochemical sulfur cycle. A major pathway for the breakdown of SQ is the sulfoglycolytic Embden-Meyerhof-Parnas (sulfo-EMP) pathway, which involves cleavage of the 6-carbon chain of the intermediate sulfofructose-1-phosphate (SFP) into dihydroxyacetone and sulfolactaldehyde, catalyzed by class I or II SFP aldolases. While the molecular basis of catalysis is well studied for class I SFP aldolases, comparatively little is known about class II SFP aldolases. Here, we report the molecular architecture and biochemical basis of catalysis of two metal-dependent class II SFP aldolases from Hafnia paralvei and Yersinia aldovae. 3D X-ray structures in complex with the substrate SFP and product DHAP reveal a dimer-of-dimers (tetrameric) assembly, and identify the sulfonate binding pocket that defines the substrate specificity of these enzymes, two metal binding sites, and flexible loops that are implicated in catalysis. Both enzymes were metal dependent and exhibited high KM values for SFP, consistent with their role in a unidirectional nutrient acquisition pathway. Bioinformatic analysis identified a range of sulfo-EMP gene clusters containing class I/II SFP aldolases. The class I and II SFP aldolases occur exclusively within Actinobacteria and Firmicutes phyla, respectively, while both classes of enzyme occur within Proteobacteria. This work emphasizes the importance of SQ as a nutrient for diverse bacterial phyla and the different chemical strategies they use to harvest carbon from this sulfosugar
    corecore