25 research outputs found

    A Spin-1/2 Model for CsCuCl_3 in an External Magnetic Field

    Full text link
    CsCuCl_3 is a ferromagnetically stacked triangular spin-1/2 antiferromagnet. We discuss models for its zero-temperature magnetization process. The models range from three antiferromagnetically coupled ferromagnetic chains to the full three-dimensional situation. The situation with spin-1/2 is treated by expansions around the Ising limit and exact diagonalization. Further, weak-coupling perturbation theory is used mainly for three coupled chains which are also investigated numerically using the density-matrix renormalization group technique. We find that already the three-chain model gives rise to the plateau-like feature at one third of the saturation magnetization which is observed in magnetization experiments on CsCuCl_3 for a magnetic field perpendicular to the crystal axis. For a magnetic field parallel to the crystal axis, a jump is observed in the experimental magnetization curve in the region of again about one third of the saturation magnetization. In contrast to earlier spinwave computations, we do not find any evidence for such a jump with the model in the appropriate parameter region.Comment: 13 pages LaTeX2e with EPJ macro package (included), 8 (e)ps figures included using psfig.sty; this is the final version to appear in Eur. Phys. J B; a few further explanations and one reference adde

    Ising films with surface defects

    Full text link
    The influence of surface defects on the critical properties of magnetic films is studied for Ising models with nearest-neighbour ferromagnetic couplings. The defects include one or two adjacent lines of additional atoms and a step on the surface. For the calculations, both density-matrix renormalization group and Monte Carlo techniques are used. By changing the local couplings at the defects and the film thickness, non-universal features as well as interesting crossover phenomena in the magnetic exponents are observed.Comment: 8 pages, 12 figures included, submitted to European Physical Journal

    Ising thin films with modulations and surface defects

    Full text link
    Properties of magnetic films are studied in the framework of Ising models. In particular, we discuss critical phenomena of ferromagnetic Ising films with straight lines of magnetic adatoms and straight steps on the surface as well as phase diagrams of the axial next-nearest neighbour Ising (ANNNI) model for thin films exhibiting various spatially modulated phases.Comment: 6 pages, 4 figures include

    The generalized contact process with n absorbing states

    Full text link
    We investigate the critical properties of a one dimensional stochastic lattice model with n (permutation symmetric) absorbing states. We analyze the cases with n4n \leq 4 by means of the non-hermitian density matrix renormalization group. For n=1 and n=2 we find that the model is respectively in the directed percolation and parity conserving universality class, consistent with previous studies. For n=3 and n=4, the model is in the active phase in the whole parameter space and the critical point is shifted to the limit of one infinite reaction rate. We show that in this limit the dynamics of the model can be mapped onto that of a zero temperature n-state Potts model. On the basis of our numerical and analytical results we conjecture that the model is in the same universality class for all n3n \geq 3 with exponents z=ν/ν=2z = \nu_\|/\nu_\perp = 2, ν=1\nu_\perp = 1 and β=1\beta = 1. These exponents coincide with those of the multispecies (bosonic) branching annihilating random walks. For n=3 we also show that, upon breaking the symmetry to a lower one (Z2Z_2), one gets a transition either in the directed percolation, or in the parity conserving class, depending on the choice of parameters.Comment: 10 pages, RevTeX, and 10 PostScript figures include

    Density-Matrix Spectra of Solvable Fermionic Systems

    Full text link
    We consider non-interacting fermions on a lattice and give a general result for the reduced density matrices corresponding to parts of the system. This allows to calculate their spectra, which are essential in the DMRG method, by diagonalizing small matrices. We discuss these spectra and their typical features for various fermionic quantum chains and for the two-dimensional tight-binding model.Comment: 12 pages and 9 figure

    Construction of a matrix product stationary state from solutions of finite size system

    Full text link
    Stationary states of stochastic models, which have NN states per site, in matrix product form are considered. First we give a necessary condition for the existence of a finite MM-dimensional matrix product state for any N,M{N,M}. Second, we give a method to construct the matrices from the stationary states of small size system when the above condition and NMN\le M are satisfied. Third, the method by which one can check that the obtained matrices are valid for any system size is presented for the case where M=NM=N is satisfied. The application of our methods is explained using three examples: the asymmetric exclusion process, a model studied in [F. H. Jafarpour: J. Phys. A: Math. Gen. 36 (2003) 7497] and a hybrid of both of the models.Comment: 22 pages, no figure. Major changes: sec.3 was shortened; the list of references were changed. This is the final version, which will appear in J.Phys.

    The one-dimensional contact process: duality and renormalisation

    Full text link
    We study the one-dimensional contact process in its quantum version using a recently proposed real space renormalisation technique for stochastic many-particle systems. Exploiting the duality and other properties of the model, we can apply the method for cells with up to 37 sites. After suitable extrapolation, we obtain exponent estimates which are comparable in accuracy with the best known in the literature.Comment: 15 page

    The non-equilibrium phase transition of the pair-contact process with diffusion

    Full text link
    The pair-contact process 2A->3A, 2A->0 with diffusion of individual particles is a simple branching-annihilation processes which exhibits a phase transition from an active into an absorbing phase with an unusual type of critical behaviour which had not been seen before. Although the model has attracted considerable interest during the past few years it is not yet clear how its critical behaviour can be characterized and to what extent the diffusive pair-contact process represents an independent universality class. Recent research is reviewed and some standing open questions are outlined.Comment: Latexe2e, 53 pp, with IOP macros, some details adde

    Density-Matrix Renormalization-Group Analysis of Quantum Critical Points: I. Quantum Spin Chains

    Full text link
    We present a simple method, combining the density-matrix renormalization-group (DMRG) algorithm with finite-size scaling, which permits the study of critical behavior in quantum spin chains. Spin moments and dimerization are induced by boundary conditions at the chain ends and these exhibit power-law decay at critical points. Results are presented for the spin-1/2 Heisenberg antiferromagnet; an analytic calculation shows that logarithmic corrections to scaling can sometimes be avoided. We also examine the spin-1 chain at the critical point separating the Haldane gap and dimerized phases. Exponents for the dimer-dimer and the spin-spin correlation functions are consistent with results obtained from bosonization.Comment: 21 pages, 12 figures, new results and added references, to appear in PR

    Entanglement in solvable many-particle models

    Get PDF
    Lecture notes for the Brazilian School on Statistical Mechanics, Natal, Brazil, July 2011. The five lectures introduce to the description of entanglement in many-particle systems and review the ground-state entanglement features of standard solvable lattice models. This is done using a thermodynamic formulation in which the eigenvalue spectrum of a certain Hamiltonian determines the entanglement properties. The methods to obtain it are discussed and results, both analytical and numerical, for various cases including time evolution are presented.Comment: 44 pages, 30 figures. Lecture notes for the Brazilian School on Statistical Mechanics, Natal, July 2011. For the Brazilian Journal of Physic
    corecore