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Abstract.

Lecture notes for the Brazilian School on Statistical Mechanics

Natal, Brazil, July 18-22, 2011.

The five lectures introduce to the description of entanglement in many-particle systems

and review the ground-state entanglement features of standard solvable lattice models.

This is done using a thermodynamic formulation in which the eigenvalue spectrum of a

certain Hamiltonian determines the entanglement properties. The methods to obtain

it are discussed and results, both analytical and numerical, for various cases including

time evolution are presented.

Preface

Entanglement in many-particle quantum states has been a topic of intense research

in recent years with applications in numerics and interesting links to statistical physics.

It is therefore excellently suited for an advanced course in a summer school. The

following notes correspond closely to five lectures given in July 2011 at the International

Institute of Physics in Natal, Brazil. They are based on a recent review article [1],

but the material has been properly adapted to the purpose. Thus they contain more

introductory examples and certain topics are presented in more detail. On the other

hand, new material from the last two years, as well as supplementary notes have

been added. Throughout the notes, the style is lecture-like with itemized statements.

References are only given in direct connection with the problem at hand, show a

preference of own work and should not be regarded as an exhaustive list. Compared to

the version handed out in Natal, additional figures have been included and some editing

took place.
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1. Background and basics

In this section, I summarize the basic features of entangled states and reduced density

matrices and illustrate them with examples. For further details, see e.g. the short review

[2].

1.1. Introduction

Entanglement is a notion which goes back to 1935 when it was introduced by Schrödinger

in a series of three articles (in German, the German word is “Verschränkung”) [3]. At the

same time Einstein, Podolski and Rosen discussed their famous “Gedankenexperiment”,

in which they considered two particles with fixed total momentum and relative distance.

Nowadays this is usually formulated with two spins, and this is also where one encounters

entanglement first. Entanglement has to do with the features of quantum states and

the information contained in wave functions. For a long time, it was a topic discussed

mostly in quantum optics and for systems with few degrees of freedom.

In the last 25 years, however, it has seen a revival with input from very different

areas, namely

• the theory of black holes

• the numerical investigation of quantum chains

• the field of quantum information

In these cases one always deals with large systems and many degrees of freedom.

In entanglement investigations, one asks the following question:

• given a total system in a certain quantum state |Ψ〉
• divide it (in space, or in Hilbert space) in two parts (bipartition)

• how are the two parts coupled in |Ψ〉 ?
This is more general than looking at, say, a two-point correlation function. And there

is a general way to answer this question, namely one can bring |Ψ〉 into a standard

form, which displays the coupling. This is the Schmidt decomposition which we will

discuss in a moment. To obtain it in practice, one uses quantities which determine all

properties of a subsystem, namely reduced density matrices (RDMs). They also contain

the information on the entanglement and will be the basic tool throughout the lectures.

The states we will study are the ground states of models which, on the one hand, are

solvable and, on the other hand, have a physical significance, like tight-binding (hopping)

models or spin chains. As in other contexts, they serve as points of orientation which

allow to study the features of the problem and to develop a feeling and an overall picture.

My own interest arose in connection with the DMRG, where the entanglement turned

out to be crucial for the performance of the method. Entanglement continues to play a

role also in other algorithms and their design, and in this respect it has quite practical

implications. But in these lectures, we shall be concerned essentially with the theory.
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1.2. Schmidt decomposition

Consider a quantum system in state |Ψ〉 and divide it into two parts 1 and 2. Then one

can write

|Ψ〉 =
∑

m,n

Am,n|Ψ1
m〉|Ψ2

n〉 (1)

where the |Ψ1
m〉 and |Ψ2

n〉 are orthonormal bases in the two Hilbert spaces.

Note that one has a double sum and that the matrix Am,n is in general rectangular,

since the dimensions of the Hilbert spaces can differ. Nevertheless one can obtain a

diagonal form via the so-called singular-value decomposition

A = UDV′ (2)

where U is square and unitary, D diagonal and V′ rectangular with orthonormal rows.

This gives

|Ψ〉 =
∑

m,n,k

Um,nDn,nV
′
n,k|Ψ1

m〉|Ψ2
k〉 (3)

Combining |Ψ1
m〉 with U and |Ψ2

k〉 with V′ one obtains with λn = Dn,n

|Ψ〉 =
∑

n

λn |Φ1
n〉|Φ2

n〉 (4)

This is called the Schmidt decomposition (Schmidt 1907) [4]. For the history see section

1.7. It has the following features

• Single sum, limited by the smaller Hilbert space

• New orthonormal sets |Φα
n〉 in both parts

•
∑

|λn|2 = 1 if |Ψ〉 is normalized

• Entanglement encoded in the λn

• Limiting cases

λ1 = 1, λn = 0 for n > 1: only one term, product state, no entanglement

λn = λ for all n: all terms equal weight, maximal entanglement

This refers to a particular bipartition and one can investigate different partitions to

obtain a complete picture. Some standard bipartitions for one-dimensional systems are

shown in fig. 1.

1 2 2 2
2

1

1

Figure 1. Bipartitions: Chain cut in two halves (left), ring cut in two halves (centre)

and segment in an infinite chain (right).
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1.3. Examples

We give here examples for the Schmidt decomposition in three different systems.

(a) Two spins one-half

|Ψ1〉 = |+〉|+〉 product state (5)

|Ψ2〉 = a|+〉|+〉+ b|+〉|−〉
= |+〉

[

a|+〉+ b|−〉
]

product state (6)

|Ψ3〉 = a|+〉|+〉+ d|−〉|−〉 entangled state (7)

All these states are already in Schmidt form. However

|Ψ4〉 = a|+〉|+〉+ b|+〉|−〉+ c|−〉|+〉
= |+〉

[

a|+〉+ b|−〉
]

+ c|−〉|+〉 (8)

is entangled, but not in Schmidt form, because the two states in subsystem 2 are not

orthogonal.

(b) Two large spins [6]

Consider the ferromagnetic spin one-half Heisenberg chain with N sites

H = −J
∑

n

snsn+1 (9)

All eigenstates can be written as |Ψ〉 = |S, Sz〉 with total spin S and z-component Sz. In

the ground state all spins are parallel, S = N/2, and Sz can be chosen. Choose Sz = 0

and divide the chain in two halves. Then one can use angular momentum addition as

illustrated in fig. 2

S/2,M S/2,−M

S,0

Figure 2. The state |S, 0〉 obtained from states in the subsystem.

to obtain

|S, 0〉 =
S/2
∑

M=−S/2

cM |S/2,M〉1 |S/2,−M〉2 (10)

with the Clebsch-Gordan coefficients

cm =
S!

√

(2S)!

S!

(S/2−M)!(S/2 +M)!
(11)

This is the Schmidt form for this state. Its features are
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• Only (S+1) terms, while dimension of Hilbert space is 2S

• For large S, cM ∼ exp(−2M2/S), Gaussian

• Analogous formulae for arbitrary Sz

• Special case Sz = S, all spins in the z-direction. Then |S, S〉 is a product state

|S, S〉 = |S/2, S/2〉1|S/2, S/2〉2 (12)

(c) Two coupled oscillators [7]

Consider the Hamiltonian (m = ~ = 1)

H =
1

2
(p21 + ω2

0x
2
1) +

1

2
(p22 + ω2

0x
2
2) +

1

2
k(x1 − x2)

2 (13)

The eigenfrequencies are ω2
1 = ω2

0 + 2k and ω2
2 = ω2

0 with corresponding normal

coordinates

y1 =
1√
2
(x1 − x2), y2 =

1√
2
(x1 + x2) (14)

In these coordinates, the ground state is the product of two Gaussians

|Ψ0〉 = (
ω1ω2

π2
)1/4 exp(−1

2
[ω1y

2
1 + ω2y

2
2] ) (15)

Then the following formula holds

|Ψ0〉 =
∞
∑

n=0

(−tanh η)n

cosh η
|Φn(x1)〉|Φn(x2)〉 (16)

where exp(4η) = ω1/ω2 and the |Φn〉 are oscillator states for a frequency ω̄ =
√
ω1ω2 ,

i.e. in between ω1 and ω2.

Features

• Schmidt states are “squeezed” states

• Coefficients decay exponentially, λ2n ∼ exp(−εn)
• weak coupling k: ω1 ≈ ω2 → η small, ε large, rapid decay, weak entanglement

• strong coupling k: ω1 ≫ ω2 → η large, ε small, slow decay, strong entanglement

These features are also found for one oscillator in a whole assembly.

1.4. Reduced density matrices

The Schmidt structure just discussed can be found from the density matrices associated

with the state |Ψ〉. This is also the standard way to obtain it. Starting from the total

density matrix

ρ = |Ψ〉〈Ψ| (17)

one can, for a chosen division, take the trace over the degrees of freedom in one part of

the system. This gives the reduced density matrix for the other part, i.e.

ρ1 = tr2(ρ) , ρ2 = tr1(ρ) (18)
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These hermitian operators can be used to calculate arbitrary expectation values in the

subsystems. As to the entanglement, assume that |Ψ〉 has the Schmidt form (4). Then

ρ = |Ψ〉〈Ψ| =
∑

n,n′

λnλ
∗
n′ |Φ1

n〉|Φ2
n〉〈Φ1

n′|〈Φ2
n′| (19)

Taking the traces with the |Φα
n〉 gives n′ = n and

ρα =
∑

n

|λn|2 |Φα
n〉〈Φα

n| , α = 1, 2 (20)

This means that

• ρ1 and ρ2 have the same non-zero eigenvalues

• these eigenvalues are given by wn = |λn|2

• their eigenfunctions are the Schmidt functions |Φα
n〉

Therefore the eigenvalue spectrum of the ρα gives directly the weights in the Schmidt

decomposition and a glance at this spectrum shows the basic entanglement features

of the state, for the chosen bipartition. For this reason, it has also been termed

“entanglement spectrum” [8].

Remarks

• the ρα describe mixed states. An expectation value in subsystem α is given by

< Aα > =
∑

n

|λn|2 〈Φα
n|Aα|Φα

n〉 (21)

• Since the ρα are hermitian and have non-negative eigenvalues, one can write

ρα =
1

Z
e−Hα (22)

where Z is a normalization constant and the operator Hα has been termed

“entanglement Hamiltonian”. This form will be encountered permanently in the

following.

• The ρα should not be confused with e.g. the one-particle density matrices, which

are simple correlation functions.

Usually, one starts in a basis where |Ψ〉 has the form (1). Then

ρ = |Ψ〉〈Ψ| =
∑

m,n,m′,n′

Am,nA
∗
m′,n′|Ψ1

m〉|Ψ2
n〉〈Ψ1

m′|〈Ψ2
n′| (23)

and taking the trace with the |Ψ2
n〉 gives n′ = n and

ρ1 =
∑

m,m′

∑

n

Am,nA
†
n,m′ |Ψ1

m〉〈Ψ1
m′| (24)

Thus ρ1 contains the square hermitian matrix AA† and similarly ρ2 contains (A†A)∗.

The form (20) is then obtained by diagonalizing these matrices. This is the general

approach.
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Example: Two spins one-half

A general normalized state is

|Ψ〉 = a|+〉|+〉+ b|+〉|−〉+ c|−〉|+〉+ d|−〉|−〉 (25)

where |a|2 + |b|2 + |c|2 + |d|2 = 1. The matrix A is then

A =

(

a b

c d

)

(26)

and one obtains

AA† =

(

aa∗ + bb∗ ac∗ + bd∗

ca∗ + bd∗ cc∗ + dd∗

)

(27)

Since the trace is one, the eigenvalues are given by

w1,2 =
1

2
±
√

1

4
− det(AA†) (28)

The state is entangled if w1,2 6= 0, 1, i.e. if detA = ad− bc 6= 0. This includes the state

|Ψ4〉 in section 1.3, where a, b, c 6= 0 and d = 0.

1.5. Application: DMRG

The density-matrix renormalization group method (DMRG) is a numerical procedure,

which was introduced by Steven White in 1992 [9, 10] and makes direct use of the

Schmidt decomposition and the reduced density matrices. For a review, see [11].

Consider a quantum chain, e.g. a spin one-half model, with open ends. Then in

the simplest variant, the following steps take place, compare fig. 3.

(0) Start

Begin with a small system of 5-10 sites.

Calculate the ground state exactly.

(1) Schmidt decomposition

Divide into two halves.

Calculate the RDM’s.

Diagonalize them and obtain the Schmidt coefficients and Schmidt states.

(2) Approximation

Keep only the m Schmidt states with largest weights wn.

Truncation error: sum of the discarded weights
∑

n>mwn.

(3) Enlargement

Insert (two) additional sites in the center.

Form new Hamiltonian in the basis of kept and additional states.

Calculate ground state.
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Go back to (1) and repeat.

ρ1 ρ2

m states m states

m states m states(3)

(2)

(1)

Figure 3. Steps in the (infinite-size) DMRG algorithm.

For this procedure, the form of the Schmidt spectra is crucial. To have a good

performance, a rapid drop of the wn is necessary such that only a small number of

Schmidt states has to be kept. In terms of entanglement, the state must be weakly

entangled. This is satisfied for non-critical chains. For an Ising model in a transverse

field, such a small number as 16 Schmidt states gives already a fantastic accuracy for

the ground-state energy. It is therefore important to understand the features of RDM

spectra and this leads directly to the study of solvable cases, which is the topic of these

lectures.

1.6. Entanglement entropy

The full RDM spectra give the clearest impression of the entanglement in a bipartite

system. But it is also desirable to have a simple measure through one number. Since the

eigenvalues of the RDM’s can be viewed as probabilities, one can take the usual entropy,

as used in probability theory, to characterize the wn. This gives the (von Neumannn)

entanglement entropy

Sα = −tr(ρα ln ρα) = −
∑

n

wn lnwn, (29)

which is the common entanglement measure for bipartitions. It has the following

properties

• S1 = S2 ≡ S since the spectra are equal. One can talk of the entanglement entropy.

• S = 0 for product states.

• S is maximal if all wn are equal.

If wn = 1/M for n = 1, 2, . . . ,M then S = lnM .

The last property leads to a simple interpretation of S. Write

S = lnMeff (30)

Then eS is an effective number of states in the Schmidt decomposition.
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A related measure is the Rényi entropy

Sn =
1

1− n
ln tr(ρnα) (31)

where n can also be non-integer. Sn has similar properties as S and the same extremal

values S = 0 and S = lnM . For n→ 1 write

Sn =
1

1− n
ln tr[ρα exp((n− 1) ln ρα)] (32)

and expand the exponential function to obtain S1 = S. The Rényi entropy is somewhat

simpler to calculate, since it contains only a power of ρα. The important point is that

both entropies measure a mutual connection and will, in general, not be proportional

to the size of a subsystem as usual thermodynamic entropies are.

1.7. Historical note

Erhard Schmidt (1876-1959) obtained his PhD in 1905 with Hilbert in Göttingen and

was professor at the Berlin university 1917-1950. He is most widely known by the

orthogonalization procedure bearing his name. The work linking him to the quantum

problems discussed here, appeared in 1907 in the prestigeous journal “Mathematische

Annalen” [4]. It was based on his thesis and dealt with coupled integral equations with

a non-symmetric kernel K(s, t).

In abstract notation, and changing his parameter λ to 1/λ, the equations were

Kψ = λφ, K ′φ = λψ (33)

He deduced a spectral representation for K

K(s, t) =
∑

n

λnφn(s)ψn(t) (34)

where φn and ψn are the eigenfunctions of the symmetric kernels KK ′ and K ′K with

common eigenvalue λ2n

KK ′φn = λ2nφn, K ′Kψn = λ2nψn (35)

One sees that the kernel K(s, t) corresponds to the total wave function, which for two

degrees of freedom is Ψ(x1, x2). Moreover, one sees that he already worked with the

quantities which in the present context are called reduced density matrices. And finally,

he discussed best approximations for the kernel based on keeping the terms with largest

weights, which is the same recipe as used in the DMRG.

The representation of a wave function Ψ(x1, x2) in this way was discussed in a paper

by Schrödinger in 1935 [5]. At that time, unsymmetric kernels were already well-known

in mathematics, so he referred not to Schmidt but to the textbook by Courant and

Hilbert. The specialists will notice that the equations (33), (35) with K = A− B and

K ′ = A+B are just the ones appearing in the famous paper by Lieb, Schultz and Mattis

(1961) [12] where they diagonalize a quadratic form in fermions.
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2. Free-particle models

2.1. Solvable cases

Before we start the discussion of the free-particle models, which will be the focus of

these lectures, let me list the quantum states for which one can obtain explicit results

for bipartite RDM’s and thus for the entanglement

• Ground states of free-fermion or free-boson systems

• Ground states of certain integrable models

• Ground states of conformally invariant models

• Ground states which have matrix-product form or other simple structures

An example of the last case was the ferromagnetic ground state in section 1.3.

2.2. Free particles, general result

Consider models where the Hamiltonian is a quadratic form in fermionic or bosonic

operators and defined on a lattice. Two standard examples are

• Fermionic hopping models with conserved particle number

H = −1

2

∑

m,n

tm,nc
†
mcn (36)

• Coupled oscillators with eigenfrequency ω0

H =
∑

n

[

−1

2

∂2

∂x2n
+

1

2
ω2
0x

2
n

]

+
1

4

∑

m,n

km,n(xm − xn)
2 (37)

For such free-particle models, the reduced density matrices for the ground state can be

written

ρα =
1

Z
e−Hα , Hα =

L
∑

l=1

εlf
†
l fl (38)

Here L is the number of sites in subsystem α and the operators f †
l , fl are fermionic or

bosonic creation and annihilation operators for single-particle states with eigenvalues

εl. The f ’s are related to the original operators in the subsystem by a canonical

transformation. The constant Z ensures the correct normalization tr(ρα) = 1.

Note the following features

• ρα looks thermodynamic.

• the “entanglement Hamiltonian” Hα is of the same type as H .

We will see later that Hα is not the Hamiltonian of the subsystem. Therefore (38) is not

a true Boltzmann formula. Nevertheless, the entanglement problem has been reduced

to that of a certain Hamiltonian and its thermodynamic properties. But first we want

to derive the result.
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2.3. Method 1 - Direct approach

The direct method to obtain ρα is to integrate over the degrees of freedom outside the

subsystem α. We illustrate it for the example of two oscillators discussed already in

section 1.3 [13]. The ground state was

|Ψ0〉 = (
ω1ω2

π2
)1/4 exp(−1

2
[ω1y

2
1 + ω2y

2
2] ) (39)

One goes through the following steps.

Step I

• Write in terms of x1 and x2

• Form |Ψ0〉〈Ψ0|, i.e. Ψ0(x1, x2)Ψ0(x
′
1, x

′
2)

• Set x′2 = x2 and integrate over x2

• Use (x1 + x′1)
2 = 2(x21 + x

′2
1 )− (x1 − x′1)

2

• Result

ρ1(x1, x
′
1) = C exp (−1

2
(a− b)x21) exp (− b

4
(x1 − x′1)

2) exp (−1

2
(a− b)x

′2
1 ) (40)

where a = (ω1 + ω2)/2 and b = (ω1 − ω2)
2/2(ω1 + ω2).

Due to the derivation, ρ1 has the form of an integral operator. To obtain its

eigenfunctions and eigenvalues, one would have to solve an integral equation.

Step II

• Determine the differential operator for which (40) is the (x1, x
′
1) matrix element.

• Observe that

exp (− b
4
(x1 − x′1)

2) = 2 (
π

b
)1/2 〈x1| exp (

1

b

∂2

∂x21
) |x′1〉 (41)

Proof: Express the operator on the right in terms of its eigenfunctions ψk(x) =

(2π)−1/2 exp(ikx) and integrate over k

• Introduce new coordinates y2 = bx21/2 and the frequency ω2/4 = (a− b)/b

• Result

ρ1 = K exp (−1

4
ω2y2) exp (

1

2

∂2

∂y2
) exp (−1

4
ω2y2) (42)

If one could simply pull the exponentials together, one would have the Hamiltonian of

a harmonic oscillator in the exponent. However, the exponentials do not commute.

Step III

• Write in terms of boson operators α, α† where α =
√

ω/2(y + 1/ω ∂/∂y)

• Set up equations of motion for Heisenberg operators of α, α† formed with ρ1

• Find Bogoliubov transformation to new boson operators β, β†

β = chθ α + shθ α†, β† = shθ α + chθ α† (43)

such that ρ1 becomes a single exponential. This amounts to another stretching of

the coordinate y → z.
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• Result

ρ1 = K exp (−ε β†β) (44)

This is the form announced above. The Hamiltonian H1 in the exponent describes an

oscillator with frequency ε where

coth(
ε

2
) =

√

a

a− b
=

1

2

[√

ω1

ω2
+

√

ω2

ω1

]

(45)

and its eigenfunctions are those quoted in the Schmidt decomposition (16) when

expressed in terms of x1.

This derivation can be generalized to any number of oscillators in a larger system,

which proves the general statement for this case. However, one sees that the calculation

involves a number of steps and is already somewhat tedious for the simple case treated

above. It is therefore fortunate that another much simpler approach exists which we

will discuss for fermions [14, 15].

2.4. Method 2 - Correlation functions

Consider a system of free fermions hopping between lattice sites with Hamiltonian (36).

The ground state is a Slater determinant describing the filled Fermi sea. In such a state,

all many-particle correlation functions factorize into products of one-particle functions.

For example,

〈c†mc†nckcl〉 = 〈c†mcl〉〈c†nck〉 − 〈c†mck〉〈c†ncl〉 (46)

If all sites are in the same subsystem, a calculation using the reduced density matrix must

give the same result. But this is guaranteed by Wick’s theorem if ρα is the exponential

of a free-fermion operator

ρα = K exp (−
L
∑

i,j=1

hi,jc
†
icj) (47)

where i and j are sites in the subsystem. Thus ρα is of the type given in (38).

The hopping matrix hi,j is then determined such that it gives the correct one-particle

correlation functions Ci,j = 〈c†icj〉. This is done in the common diagonal representation

of both matrices.

If φl(i) are the eigenfunctions of C in the subsystem with eigenvalues ζl, the

transformation

ci =
∑

l

φl(i)fl (48)

makes the one-particle function diagonal in the new operators fl

〈f †
l fl′〉 = ζl δl,l′ (49)

To obtain this by taking the trace with ρα, the operator Hα must have the diagonal

form given in (38) with the two eigenvalues related by

εl = ln (
1− ζl
ζl

) or ζl =
1

eεl + 1
(50)



Entanglement in solvable many-particle models 13

Features

• Derivation is very short and clear

• Valid for any Slater determinant

• Gaussian nature of the problem, only simplest correlator enters

• Similar for bosonic case

2.5. Example

Ring with N sites and nearest-neighbour hopping. The single-particle states are plane

waves and H is diagonalized by putting

cn =
1√
N

∑

q

exp (iqn)cq (51)

In the ground state, the states are filled up to qF and the correlation function is

Cm,n =
1

N

∑

q

exp (−iq(m− n))〈c†qcq〉 (52)

=

∫ qF

−qF

dq

2π
e−iq(m−n), N → ∞ (53)

=
sin(qF (m− n))

π(m− n)
(54)

Due to the translation invariance, it depends only on the difference m − n. For half

filling qF = π/2. Note the oscillation and the power-law decay of the correlations corre-

sponding to a critical system. Mathematically, it is a sort of Hilbert matrix.

Choose a segment of L consecutive sites as subsystem, diagonalize the matrix

numerically and order the eigenvalues according to their magnitude. This gives the

following fig. 4.
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l
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n
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Figure 4. Density-matrix spectra for a segment of L sites in an infinite hopping

model. Left: Single-particle eigenvalues εl. Right: Total eigenvalues wn. From [16].

Copyright Springer-Verlag, reprinted with permission.



Entanglement in solvable many-particle models 14

Features

• Dispersion of εl roughly linear with curvature

• Values of order 1 and larger

• Curves flatter for larger L

• Rapid initial decrease of the wn

• Entanglement small, but increasing with L

2.6. Characteristics of the problem

(a) Single-particle eigenfunctions

For the low-lying εl, the eigenfunctions are localized near the boundaries.

This is shown in fig. 5 for a non-critical and a critical hopping chain.

 0  20  40  60  80  100
-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

j

δ=0.1
-0.5

-0.3

-0.1

 0.1

 0.3

 0.5

 0  20  40  60  80  100

j

δ=0

Figure 5. Lowest lying single-particle eigenstates in a dimerized (δ = 0.1, left) and a

homogeneous (δ = 0, right) hopping model for a segment of L = 100 sites. From [16].

Copyright Springer-Verlag, reprinted with permission.

Consequences

• Double degeneracy of low εl for segments in non-critical chains

• Slower decay of the resulting wn

In fig. 6 this is illustrated for a half-chain of coupled oscillators. Shown are the results

both for the open chain (fig. 1 left) where one has one boundary and for the ring (fig.

1 centre) where the subsystem is a segment with two boundaries.

The slower decay of the wn leads to a poorer performance of the DMRG for rings

and explains why the method is normally used in the open-chain geometry. In two

dimensions, whole bands of εl arise which are associated with the boundary between

the subsystems, see section 4.4. In the entanglement entropy this leads to the so-called

“area law”.
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Figure 6. Spectra for one-half of an oscillator chain with k = 0.5 and L = 32 sites.

From Chung [17].

(b) Entanglement Hamiltonian Hα

In general, this operator is different from the Hamiltonian of the subsystem.

This is shown in fig. 7 for a segment in a hopping chain. The hopping matrix hi,j
in (47) was calculated, using the common eigenfunctions φl of C and h, via

hij =
∑

l

φl(i) εl φl(j) (55)

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14  16

1st

3rd x25

5th x50

Figure 7. Matrix elements in Hα for a hopping model. First, third and fifth neighbour

hopping in a segment of L = 16 sites. From [1]. Copyright IOP Publishing. reprinted

with permission.

The dominant elements are those for nearest-neighbour hopping and vary roughly

parabolically, whereas in the chain they are constant. For a half-chain one finds half a

parabola.
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(c) Spectrum of C

In a large subsystem, most of the eigenvalues ζl lie (exponentially) close to 0 and

to 1.

This is illustrated in fig. 8 for a segment in a hopping model

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18  20

ζl

l

Figure 8. Eigenvalues of the correlation matrix for a segment of L = 20 sites in a

hoppping chain.

It can be understood from (52) as follows

• In the total system, the eigenvalues are 〈c†qcq〉 = 0, 1

• Restricting C to the subsystem changes the spectrum

• Low-lying states localized near the boundary appear, compare (a)

• But bulk states remain

In numerics, this leads to the following difficulty. The closeness of ζl to 0 or 1 soon

exceeds the usual double-precision accuracy. The εl can then no longer be determined

reliably, unless one works with special techniques. Therefore the values of the εl in most

of the figures shown here do not exceed 20-30. However, for the entanglement this does

not matter, since large εl give negligible contributions.

A special role is also played by eigenvalues ζl = 1/2 corresponding to εl = 0. Such

an eigenvalue causes a two-fold degeneracy of all wn and is therefore seen in the RDM

spectrum. These zero modes have found much interest recently because they may reflect

a symmetry of the real Hamiltonian with boundaries.

2.7. Schmidt form for fermions

The correlation function approach gives the Schmidt spectra in a very easy way. But

it is also instructive to derive the Schmidt decomposition directly. This is done in the

following way [18].

• Consider a system with N particles. Divide the occupied single-particle states ψq(n)

into the components

ψq(n) =

{

ψ1
q (n) : n ∈ 1

ψ2
q (n) : n ∈ 2

(56)
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These are neither orthogonal nor normalized in their subsystems.

• Find new states χl(n) such that their components χ1
l (n) and χ

2
l (n) are orthogonal

in their subsystems. This is done by diagonalizing the overlap matrices

Mα
q,q′ = 〈ψα

q |ψα
q′〉, α = 1, 2 (57)

Their eigenvalues are ζl and 1− ζl and the new functions have the norms

〈χ1
l |χ1

l 〉 = ζl, 〈χ2
l |χ2

l 〉 = 1− ζl (58)

• Form normalized states via

φ1
l =

1√
ζl
χ1
l , φ2

l =
1√

1− ζl
χ2
l (59)

• Define Fermi operators aα, l for the φ
α
l . Then

|Ψ〉 =
N
∏

l=1

[

√

ζl a
†
1, l +

√

1− ζl a
†
2, l

]

|0〉 (60)

where |0〉 is the vacuum. This gives the Schmidt decomposition if one multiplies

out the product.

Comments

• Instead of the L× L correlation matrix C, the N ×N overlap matrix M appears

• However, the non-trivial eigenvalues ζl are the same

• A particle in state χl is found with probability ζl in part 1 and with probability

1− ζl in part 2

• If ζl = 0 the particle is found only in subsystem 2. This has to happen, if subsystem

1 cannot accomodate all the N particles.

• The approach can be applied to continuous systems where ψq(n) → ψq(x)

The approach shows that the single-particle eigenvalues ζl in one subsystem are associ-

ated with the eigenvalues 1 − ζl in the other. The two lead to ±εl and give the same

wn-spectrum, as it should be.

Example [19]

N free fermions on a ring of length L, subsystem segment (−ℓ/2, ℓ/2).
Single-particle wavefunctions

ψq(x) =
1√
L
exp (iqx), q =

2π

L
n, n = 0,±1,±2, . . . (61)

Overlap matrix in subsystem

M1
q,q′ = 〈ψ1

q |ψ1
q′〉 (62)

=
1

L

∫ ℓ/2

−ℓ/2

dx exp (−i(q − q′)x) (63)

=
2

(q − q′)L
sin((q − q′)ℓ/2) (64)
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Writing q = 2πm/L, q′ = 2πn/L, the matrix becomes

M1
m,n =

sin((πℓ/L)(m− n))

π(m− n)
(65)

This is the correlation matrix result (54) with the substitution qF → πℓ/L. The case

ℓ = L/2 corresponds to half filling, and one can take over the lattice results for the ζl.

Choosing a different segment of the same length changes M but not the eigenvalues.

2.8. Some additional details

• In the correlation function approach, the eigenvalue equation can also be written

in the form

(1− 2C)φl = tanh(
εl
2
)φl. (66)

• If the expectation values Fi,j = 〈c†ic†j〉 and F ∗
i,j = 〈cjci〉 are non-zero, they have to

be included in the considerations. Then for real F the equation becomes

(2C− 1− 2F)(2C− 1+ 2F)φl = tanh2(
εl
2
)φl. (67)

• Instead of working with the usual fermions, one can use Majorana fermions defined

by

a2n−1 = (cn + c†n), a2n = i(cn − c†n) (68)

and form the 2L×2L correlation matrix 〈aman〉 in the subsystem. It has eigenvalues

1± i tanh(εl/2). This is usually done if the “anomalous” correlation functions Fi,j

exist.

• For coupled oscillators, the correlation functions of position variables and of

momenta, Xi,j = 〈xixj〉 and Pi,j = 〈pipj〉, take the place of the Majorana variables.

The single-particle eigenvalues then follow from

2P 2X φl = coth2(
εl
2
) φl. (69)

For the two coupled oscillators treated in section 2.3, one has 〈x21〉 = (1/ω1+1/ω2)/4

and 〈p21〉 = (ω1 + ω2)/4 which gives again (45).
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3. Integrable models

In one dimension one can exploit the relations between quantum spin chains and

two-dimensional classical models. For non-critical integrable models, this allows to

determine the RDM’s and their spectra analytically for large systems divided in the

middle.

3.1. Transverse Ising model

We will discuss the the approach for the Ising model in a transverse field (TI model)

with Hamiltonian

H = −
∑

n

σx
n − λ

∑

n

σz
nσ

z
n+1, (70)

The transverse field has been set to h = 1. The ground state is non-degenerate for λ < 1

and asymptotically degenerate with long-range order for λ > 1. If rewritten in terms of

Fermi operators, H becomes a quadratic form

H = −
∑

n

(2 c†ncn − 1)− λ
∑

n

(c†n − cn)(c
†
n+1 + cn+1). (71)

Therefore, according to section 2

ρα =
1

Z
e−Hα , Hα =

L
∑

l=1

εlf
†
l fl (72)

and the εl could be calculated numerically using the correlation functions. The present

approach will give them analytically.

3.2. Relation to a 2D partition function

The TI model has the following features

• H commutes (up to boundary terms) with a particular (diagonal) transfer matrix

T of an isotropic 2D Ising model on a square lattice

• Its ground state |Ψ〉 is the eigenstate of T with maximal eigenvalue

From the second property, it follows that one can obtain |Ψ〉 from an initial state |Ψs〉
via

|Ψ〉 ∼ lim
n→∞

T n|Ψs〉 (73)

In this way, one has related |Ψ〉 to the partition function of a two-dimensional semi-

infinite Ising strip. This is a discrete path-integral representation of |Ψ〉. It follows

that

• ρ = |Ψ〉〈Ψ| is given by two such strips

• ρα is obtained by tying the two half-strips together

In this way, ρα is expressed as the partition function of a fully infinite strip with a

perpendicular cut. This is shown in Fig. 9 on the left.
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Figure 9. Left: Density matrices for a quantum chain as two-dimensional partition

functions. Far left: Expression for ρ. Half left: Expression for ρ1. The matrices

are defined by the variables along the thick lines. Right: Two-dimensional system

built from four quadrants with corresponding corner transfer matrices A,B,C,D.

The arrows indicate the direction of transfer. From [16]. Copyright Springer-Verlag,

reprinted with permission.

3.3. Some transfer matrix formulae

Before we discuss the evaluation of this particular partition function, we list a few rela-

tions for conventional Ising transfer matrices.

(a) One dimension

Consider the Ising chain with Hamiltonian

H = −J
∑

n

σnσn+1, (74)

where σn = ±1. To calculate a partition function, one needs (K = βJ)

exp (−βH) = exp (Kσ1σ2) exp (Kσ2σ3) exp (Kσ3σ4) . . .

= T (σ1, σ2) T (σ2, σ3) T (σ3, σ4) . . . (75)

Each T contains the Boltzmann factor for one bond and is a 2× 2 matrix

T =

(

eK e−K

e−K eK

)

(76)

Summing over all σn = ±1 multiplies the matrices together and gives, for a ring of N

sites, the partition function Z = trTN . In operator form, T can be written

T = C exp (K∗σx) (77)

with the so-called dual coupling K∗ defined by sinh 2K∗ = 1/ sinh 2K. It is large, if K

is small and vice versa.

(b) Two dimensions

In two dimensions, one can build up a lattice row by row. The transfer matrix then

contains the Boltzmann factors for the vertical and horizontal bonds in one row. This

is shown in fig. 10 (a) by the thick lines.
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Figure 10. Geometry for two types of transfer matrices. (a) Row-to-row transfer

matrix (b) Corner transfer matrix.

For N sites in a row, T is now a 2N × 2N matrix and in operator form given by

T = T1T2 = CN exp (K∗
1

∑

n

σx
n) exp (K2

∑

n

σz
nσ

z
n+1) (78)

where K1 and K2 are the vertical and horizontal couplings, respectively.

Features

• Terms like in transverse Ising model

• However, the exponentials do not commute

• Exception: K∗
1 , K2 ≪ 1, strong vertical and weak horizontal bonds. Then one can

combine the exponentials. This is called the “Hamiltonian limit”.

3.4. Corner transfer matrices

To calculate the partition function needed for ρα, a kind of “circular” transfer matrix

would be appropriate. This is indicated in fig. 9 on the right. Then ρα would be given

by

ρα ∼ ABCD (79)

It so happens that such quantities were introduced by Baxter in 1976, see [20]. It turned

out that for integrable models they have fascinating and simple properties which make

them a powerful tool for calulating order parameters.
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(a) Structure

In fig. 10 (b) a quadrant of a square lattice model is shown. The CTM contains

all Boltzmann factors indicated by thick lines. The internal variables are summed. In

operator form, leaving out the prefactor C

• Horizontal bonds

exp (K2 σ
z
0σ

z
1) (1), exp (K2 σ

z
1σ

z
2) (3), exp (K2 σ

z
2σ

z
3) (5), . . .

• Vertical bonds

exp (K∗
1 σ

x
1 ) (2), exp (K∗

1 σ
x
2 ) (4), exp (K∗

1 σ
x
3 ) (6), . . .

• All matrices to be multiplied in correct order from bottom to top

Hamiltonian limit

A = e−HCTM (80)

with

HCTM = K∗
1

∑

n≥1

2nσx
n +K2

∑

n≥1

(2n− 1) σz
nσ

z
n+1 (81)

Features

• Inhomogeneous TI Hamiltonian

• Fields and couplings increase linearly

• Eigenvalues equidistant for L→ ∞

εl =

{

(2l − 1)ε , K∗
1 < K2

2lε , K∗
1 > K2

(82)

• To be seen directly in the limiting cases

• Otherwise result of a fermionic calculation

(b) General case

So far only the Hamiltonian limit has been considered. The structure of HCTM is

then a consequence of the wedge-like geometry. However, for determining ρα via (79),

this is not enough, since in the next quadrant the anisotropy is the other way around.

Amazingly, however, the following holds asymptotically

• The eigenvalue spectrum of HCTM has the form (82) for arbitrary couplings

• In the product ABCD, the parameter ε which gives the level spacing is

ε = π I(k′)/I(k), (83)

where k with 0 ≤ k ≤ 1 is either given by k = sinh 2K1 sinh 2K2 or by

k = 1/ sinh 2K1 sinh 2K2, whichever is smaller than 1. I(k) is the complete elliptic

integral of the first kind and k′ =
√
1− k2.
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Figure 11. Level spacing as a function of the parameter k. From [1]. Copyright IOP

Publishing, reprinted with permission.

The parameter ε diverges for k → 0 and vanishes for k → 1, in both cases

logarithmically. It is shown in fig. 11.

The derivation uses the integrability of the model, which is contained in the so-called

star-triangle equations, and a proper elliptic parametrization of the couplings. This

leads to two parameters, the k appearing above which is connected with the tempera-

ture, and another parameter u which measures the anisotropy, but does not enter the

product ABCD. A brief account can be found in the Les Houches lectures of Cardy

1988 [21].

(c) Application to RDM

The CTM discussed so far can be used for calculating the spontaneous

magnetization as expectation value of the central spin. This is sketched in the

supplement. However, this central spin is an obstacle for the RDM application, because

it is common to all four CTM’s and prevents the division of the system into two parts.

To calculate the partition function for ρα, one uses the modified CTM shown in fig. 12.

This amounts to an interchange of the coefficients 2n and 2n− 1 in (81),(82).

31 2

B

D

A

C

Figure 12. Corner transfer matrices without central spin for calculating the RDM.

Left: single matrix. Right: arrangement of four such matrices giving ρα.
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Summing up, the result for the single-particle eigenvalues in Hα is

εl =

{

(2l + 1)ε , disordered region

2lε , ordered region
(84)

where l = 0, 1, 2, . . . and ε is given by (83). In terms of the TI model, the parameter k

is

k =

{

λ , λ < 1

1/λ , λ > 1
(85)

3.5. Spectra and entanglement

In Fig. 13, spectra are shown for a finite open TI chain with N = 20 sites, divided in

the middle. Thus the subsystem has L = 10 sites and there are 10 eigenvalues εl. The

example displays both the infinite-size properties and the modifications by the finite

size.

Features

• Linear behaviour of εl as predicted

• Deviations at upper end closer to the critical point λ = 1

• At λ = 1 shape as for hopping model

• wn decrease extremely rapidly for small λ (note the scale)

• wn-decay slower near criticality, but still impressive
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Figure 13. Density-matrix spectra for one-half of a transverse Ising chain withN = 20

sites in its ground state. Left: All ten single-particle eigenvalues εl. Right: The largest

total eigenvalues wn. From Chung [17].

This means that the ground state is weakly entangled. A Schmidt decomposition

can be truncated safely after about 10 terms and this is the explanation for the fantastic

performance of the DMRG in this case [22]. Note that altogether there are 210 = 1024

wn already in this small system !
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Behaviour of the wn

• Plateaus in wn for strictly equidistant levels

• Behaviour for large n from number of partitions

wn ∼ exp[−a(ln n)2] (86)

where a = ε 6/π2.

The case of a segment cannot be treated by the CTM method, but one can simply

include the degeneracy seen numerically (section 2.6) into the CTM results. Segments

in free-particle models can be treated by a different method which, however, is more

technical and less physical than the CTM approach [23].

3.6. Other systems

The CTM approach works also for a number of other quantum chains, namely

• The XY spin chain with Hamiltonian

H = −
∑

n

[

1 + γ

2
σx
nσ

x
n+1 +

1− γ

2
σy
nσ

y
n+1

]

− h
∑

n

σz
n (87)

This generalization of the TI chain also corresponds to a free-fermion problem.

2D problem: Ising model on a triangular lattice

• The XXZ and XYZ Heisenberg spin chains which contain fermion interactions.

2D problem: Eight-vertex model

• The oscillator chain with nearest-neighbour coupling.

2D problem: Gaussian model

It turns out that the CTM spectrum has the form (84) for all these models, even if

they contain interactions. Thus one has a universality in these problems which makes

the entanglement properties of all the fermionic systems identical. Only the parameter

k is related differently to the system parameters in each case. For the oscillator chain,

for example, it is given by k/(1 − k)2 = K/ω2
0 if K is the nearest-neighbour coupling.

This chain is the bosonic analogue of the TI chain, but it has no ordered phase. In spite

of the different statistics, the wn spectra are similar and the asymptotic law (86) holds

with a smaller a.

The bosonic formula can also be used to treat exactly a two-dimensional lattice of

coupled oscillators which is divided in the middle by a straight line. This is because by

making a Fourier transformation parallel to the interface, the problem separates into

uncoupled chains.

3.7. Supplement: Onsager formula

With the CTM spectra for the 2D Ising model, the famous Onsager formula for the

spontaneous magnetization can be derived in a few lines. Working in the geometry of
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fig. 10 (b) and fixing the outer spins as indicated, the expectation value of the central

spin has the form

〈σ0〉 =
Z+ − Z−

Z+ + Z−

(88)

where Z+ and Z− are the partition functions with σ0 parallel and antiparallel to the

boundary spins, respectively. In terms of the CTM’s, this becomes a quotient of traces

〈σ0〉 =
tr(σz

0σ
z
LABCD)

tr(ABCD)
(89)

In the fermionic representation, the operator σz
0σ

z
L can be expressed in terms of the

operators which diagonalize HCTM as exp (iπ
∑

l f
†
l fl). The trace can then be performed

for each l separately and the exponential factor leads to a minus sign in the numerator.

Thus

〈σ0〉 =
∏

l

1− e−εl

1 + e−εl
(90)

Since one has to consider the ordered region, one has to choose εl = (2l − 1)ε in (82).

With q = e−ε the product then is

〈σ0〉 =
∞
∏

l=1

1− q2l−1

1 + q2l−1
(91)

Due to its definition, q is an elliptic nome and the infinite product in (91) has a simple

relation to the elliptic moduli k and k′ which appear in ε. This gives

〈σ0〉 = (k′)1/4 = (1− k2)1/8 (92)

which is Onsager’s formula. The parameter k is here k = 1/ sinh 2K1 sinh 2K2. It is

interesting to note that also Yang in his 1952 proof of Onsager’s result [24] derived an

infinite product equivalent to (91), although his approach was quite different. In the

CTM formalism, it appears in a natural way, and also the order parameters for more

complicated models take such product forms, see Baxter’s book.
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4. Entanglement entropies

We have seen already some RDM spectra, which contain the full entanglement

information. In this section we want to see how their properties translate into the

entanglement entropy. Entanglement entropies are the standard quantities considered

in this area and have been the topic of a large number of studies.

4.1. General

Due to the form of the ρα, one has the same expressions for the von Neumann entropy

as in thermodynamics. Thus, F = U − TS with T = 1, or S = −F + U , and the

free-particle character of Hα gives, as in statistical physics

S = ±
∑

l

ln(1± e−εl) +
∑

l

εl
eεl ± 1

(93)

where the upper(lower) sign refers to fermions(bosons). From this formula, one can

immediately see some general properties

• Largest contributions come from small εl

• Therefore entropy particularly large in critical systems

• Maximum value for fermions L ln 2 if all εl = 0

• If all εl are m-fold degenerate, S has m times the value without the degeneracy

The last property is an additivity which appears e.g. for uncoupled chains or for

two independent interfaces. As to the magnitude, an eigenvalue εl ∼ 1 also gives a

contribution of order 1 to S and the sums converge rapidly for larger εl.

4.2. Example: TI chain

With the spectra found in section 3, it is easy to calculate S for the infinite transverse

Ising chain. The result of a numerical evaluation is shown in fig. 14

One notes the following features

• S vanishes for λ→ 0.

Formally: All εl diverge. Physically: |Ψ〉 becomes product state.

• S goes to ln 2 for λ→ ∞.

Formally: All εl except one diverge, ε0 is zero. Physically: |Ψ〉 is superposition of

the two product states |+++ . . .〉 and | − − − . . .〉.
• S diverges at the critical point λ = 1. Formally: ε → 0, slope of the dispersion

curve goes to zero. Physically: State becomes more and more entangled as the

correlation length increases.

Due to the equidistant single-particle levels, one can even calculate S in closed

form. In the disordered region, one finds with k = λ

S =
1

24

[

ln

(

16

k2k′2

)

+ (k2 − k′2)
4I(k)I(k′)

π

]

, (94)
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Figure 14. Entanglement entropy between the two halves of an infinite TI chain as a

function of λ. From Calabrese and Cardy [25]. Copyright IOP Publishing, reprinted

with permission.

A similar expression with an additional contribution of ln 2 coming from the eigenvalue

ε0 = 0 holds in the ordered region.

From this, one can extract the behaviour near k = 1

S =
1

12
ln

(

8

1− k

)

(95)

and since the correlation length is given by ξ ∼ 1/(1− k), this can be written

S =
1

12
ln ξ (96)

which shows a logarithmic critical behaviour. The effective number of states in the

Schmidt decomposition, however, has normal power-law behaviour

Meff ∼ ξ1/12 (97)

In this sense, the coefficient of the logarithm is a critical exponent.

The Rényi entropies are

Sn =
1

1− n

∑

l

ln
(1 + e−nεl)

(1 + e−εl)n
(98)

and lead to more complicated closed expressions, but the critical behaviour is analogous

Sn =
1

24
(1 +

1

n
) ln ξ (99)

An unusual structure is seen if one looks at the next (subleading) terms in the expansion.

One finds that they are of the form ξ−k/n with k = 1, 2, 3 . . ., i.e. the powers depend on

the Rényi index n which determines the number of windings in the path integral for ρnα
[26, 27]. The same phenomenon is encountered for order parameters on such Riemann

manifolds.
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4.3. Critical chains

At a critical point, one has to work with finite subsystems. The spectra for a hopping

model have already been shown in section 2.5, and a marked size dependence was noted.

The dispersion curves of the εl became flatter with increasing L. This gives an increase

of S. From (96) one can already guess that ξ will be replaced by the length of the

subsystem, and this is in fact the case. The asymptotic formula is

S = ν
c

6
lnL+ k (100)

Features

• ν = 1, 2 number of contact points between subsystem and the rest

• k non-universal constant (subleading term)

• c central charge, from conformal considerations, c = 1/2 for TI model, c = 1 for

hopping model

This result can be understood for the hopping model as follows. The εl curves for

small systems are not linear, but show curvature. However, for large L, more precisely

for large lnL, one can use a continuum approximation to the eigenvalue equation to

derive the formula, for a segment in a chain,

εl = ± π2

2 lnL
(2l − 1) , l = 1, 2, 3 . . . (101)

Using this in (93) and changing the sums into integrals gives

S =
2 lnL

π2

[
∫ ∞

0

dε ln(1 + exp(−ε)) +
∫ ∞

0

dε
ε

exp(ε) + 1

]

(102)

and since both integrals equal π2/12 one finds

S =
1

3
lnL (103)

In numerical calculations, this logarithmic law can be seen already in relatively small

systems, where (101) does not yet hold, but one has approximately lnL → lnL + 2.5

for the first eigenvalues.

The expression for the Rényi entropy follows in the same way by going over to

integrals in (98) and gives for a segment

Sn =
1

6
(1 +

1

n
) lnL (104)

4.4. Higher dimensions

As mentioned in section 2.6, one finds bands of εl in two dimensions. This is illustrated

in fig. 15 for a 10 × 10 square lattice of coupled oscillators, divided into two halves.

The vertical coupling was varied and one can see how the plateaus with 10 levels (for

10 uncoupled chains) develop into bands. The states in a band can be indexed by a
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Figure 15. Single-particle eigenvalues for one-half of a 10 × 10 system of coupled

oscillators with ω0 = kx = 1 and different couplings ky. From [28]. Copyright APS,

reprinted with permission.

vertical momentum qy = q.

For the entropy, this has the following consequences

• Without coupling: each chain gives the same contribution s to the total

entanglement entropy. Thus for M chains one has S =M s.

• With coupling: one has to add up the contributions s(q) for each value of q. For

large M

S =
∑

q

s(q) ≃M

∫ π

0

dq

π
s(q) (105)

• Therefore S proportional to the length of the interface between the subsystems.

• In three dimensions: area of the interface

• Also for other geometries

This is the so-called area law for the entanglement entropy. For fermionic critical

systems, however, one has logarithmic corrections. For a system with typical size L in

d dimensions, one finds

S ∼ Ld−1 lnL (106)

if the the state corresponds to a finite Fermi surface. This can be proved exactly by

putting bounds on S [32, 33], see section 4.7.

4.5. Entanglement across a defect

Since the entanglement is a kind of boundary phenomenon, one expects that in will

be changed by a modification of the interface between the subsystems. This has been

investigated for hopping chains and critical TI chains with a modified bond, as shown

in fig. 16.
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0 2 L−L+1 −1 1

t

Figure 16. Transverse Ising chain with a bond defect.

Limiting cases

• Chain cut by defect, t = 0: no entanglement, S = 0

• Chain homogeneous, t = 1: logarithmic law (100), S ∼ lnL

What happens in between ? Numerical results for the εl are shown in fig. 17.

Features

• Development of a gap at the lower end of the spectrum

• Upward shift of the whole dispersion curve as t goes to zero

• Therefore decrease of S for fixed L

• Logarithmic law for S remains valid

• But c→ ceff(t).

The variation of ceff with t can be determined numerically, but it turns out that it

can also be calculated analytically [29]. Since it is an exercise in going to two dimensions

and using partition functions as in section 3, it is presented here briefly. Because one is

at the critical point, one can use conformal mappings. The scheme is shown in fig. 18.

In the end, one obtains an expression for the εl with a gap which one can insert into

the continuum formula (102). The integrals lead to dilogarithms in terms of a parameter

s = 2/(t + 1/t) which is the transmission amplitude through the defect, i.e. s2 is the

transmission coefficient. The formula is somewhat long, so it is more instructive to show
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t = 0.01
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t = 0.1
t = 0.5
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Figure 17. Single-particle eigenvalues εl as a function of the defect strength for

TI chains with 2L = 300 sites. From [29]. Copyright Wiley-VCH, reprinted with

permisson.
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Figure 18. Representation of ρα for a chain with a defect in the centre by two-

dimensional partition functions. Left: Original representation. Centre: Simplified

annular geometry. Right: Strip geometry obtained via the mapping w = ln z. The

defect line is always shown dashed. From [29]. Copyright Wiley-VCH, reprinted with

permisson.
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Figure 19. Effective central charge ceff(t) for a TI chain as a function of the defect

strength t (left curve). From [29]. Copyright Wiley-VCH, reprinted with permisson.

the result graphically, see fig. 19. For the Rényi entropy S2, by the way, one finds a

very simple result, namely

ceff,2 =
8

π2
arcsin2(s/

√
2) (107)

The continuous variation of the coefficient might seem natural, but it is connected

with the free-fermion nature of the TI and the hopping chain. The defect is then a

“marginal” perturbation which changes also the local magnetic exponent continuously.

Things are different for a defect in an XXZ chain, which is a Fermi system with

interactions. Then a defect either leads to ceff = 0 if the interaction is repulsive, or

is irrelevant, i.e. ceff = 1, if the interaction is attractive. This is in analogy to the

transmission properties in this case.
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4.6. Inhomogeneous systems

The entanglement can decrease or increase if one makes a system inhomogeneous. This

is illustrated here with two simple but instructive examples.

(a) Hopping chain in a field [30]

Consider an open chain of 2L sites with Hamiltonian

H = −1

2

L−1
∑

n=−L+1

(c†ncn+1 + c†n+1cn) + h
L
∑

n=−L+1

(n− 1/2)c†ncn (108)

This describes the so-called Wannier-Stark problem of electrons in a constant electric

field. In magnetic language, it is an XX chain with a linearly varying magnetic field in

the z-direction. Due to the field, the particles accumulate on the left.

Features

• Density profile, system full on the left and empty on the right

• Characteristic length λ = 1/h

• Transition region has width 2λ

• Single-particle wave functions are Bessel functions φk(n) = Jn−k(1/h),

concentrated near site k.

• Single-particle energies are equidistant, ωk = h(k − 1/2), Wannier-Stark ladder

Correlation matrix for a half-filled system for L→ ∞

Cmn =
∞
∑

k=0

Jk+m(λ)Jk+n(λ) (109)

=
λ

2(m− n)
[Jm−1Jn − JmJn−1] (110)

In the limit λ→ ∞, this reduces to the result (54) for the homogeneous chain.

The length scale λ is seen also in the low eigenvectors of C. They are essentially

confined to the transition region.

Numerical results for the entanglement entropy if the system is divided in the middle

are shown in fig. 20.

Features

• Logarithmic up to L ≈ λ

• Saturation for L > λ, if h 6= 0

• Saturation value for large λ

S∞(λ) =
1

6
ln(2λ) (111)

This is analogous to (96), where the correlation length entered. Interpretation: The

parts outside the interface region, which are either full or empty, cannot contribute to

the entanglement.
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Figure 20. Entanglement entropy for a hopping chain in a linear potential as a

function of the half-length L. From [30]. Copyright IOP Publishing, reprinted with

permission.

(b) Inhomogeneous hopping [31]

Consider a model with Hamiltonian

H = −1

2

L−1
∑

n=−L+1

tn(c
†
ncn+1 + c†n+1cn) (112)

where the hopping amplitudes tn decay rapidly from the center towards the ends of the

chain, for example like tn = exp(−|n|). In this model, the density in the ground state

is constant as for a homogeneous chain. However, the state is highly entangled.

Example: Four sites

t1 t1t0

Figure 21. Four-site chain with corresponding hopping amplitudes.

For t1 ≪ t0, the lowest single-particle states have energies ω1 = −t0 and

ω2 = −t21/t0. These states are occupied in the ground state and the corresponding

eigenvectors are approximately

φ1 =
1√
2











0

1

1

0











, φ2 =
1√
2











1

0

0

−1











, (113)

In the first one, sites 2 and 3 are fully entangled, in the second one sites 1 and 4.
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The total correlation matrix is

C =
1

2











1 0 0 −1

0 1 1 0

0 1 1 0

−1 0 0 1











(114)

Restricting C to the left or right half-chain, one finds ζ1 = ζ2 = 1/2, i.e. ε1 = ε2 = 0,

which gives S = 2 ln 2. The mechanism persists for larger systems and leads to the

concentric structure shown in fig. 22.

Figure 22. Concentric entanglement structure in an inhomogeneous hopping model.

After Vitagliano et al. [31].

4.7. Entropy and fluctuations

In hopping models, there is a close connection between the entanglement entropy and

the particle-number fluctuations in the considered subsystem. This allows to put bounds

on S [32, 33].

In terms of the eigenvalues ζl of the correlation matrix C, one has

S = −
∑

l

[ζl ln ζl + (1− ζl) ln(1− ζl)] =
∑

l

s(ζl) (115)

The function s(x) defined by minus the bracket in (115) has the properties

• Symmetry with respect to x = 1/2

• s(x) = 0 for x = 0 and x = 1

• Maximum at x = 1/2 with s(1/2) = ln 2

As a result, it can be bounded in 0 ≤ x ≤ 1 by a parabola

s(x) ≥ 4 ln 2 x(1− x) (116)

and the equality holds for x = 0, 1/2, 1. This is shown graphically in fig. 23

It follows that

S ≥ 4 ln 2
∑

l

ζl(1− ζl) = 4 ln 2 tr[C(1−C)] (117)

But the traces can be written as

tr[C(1−C)] = 〈N2 〉 − 〈N 〉2 (118)

where N =
∑

i c
†
ici is the particle number operator in the subsystem. Therefore the

particle-number fluctuations give a lower bound on S

S ≥ 4 ln 2 [〈N2 〉 − 〈N 〉2 ] (119)
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Figure 23. The function s(x) (solid) and its quadratic lower bound (dashed).

These fluctuations have a direct physical significance and are easier to calculate.

Application

• One dimension, large L

[〈N2 〉 − 〈N 〉2 ] = 1

π2
lnL (120)

• Two dimensions, large L

[〈N2 〉 − 〈N 〉2 ] ∼ L lnL (121)

By shifting the parabola x(1 − x) upwards, one can also obtain upper bounds. In this

way, one can prove the behaviour of the entropy in various dimensions without actually

calculating it. The lower bound in 1D gives the prefactor 4 ln 2/π2 = 0.28, which is

rather close to the exact value 1/3. From these considerations, a general formula for the

prefactor was obtained which involves an integral over the surface of the subsystem in

real space and the Fermi surface in momentum space [33].
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5. Quenches and miscellaneous

So far we have been concerned with time-independent situations. In this last section,

we turn to cases where the entanglement changes in time. Moreover, I return once more

to possible relations between the entanglement Hamiltonian and the real one and finally

give a short summary.

5.1. Quenches

If a quantum state changes in time, this will in general affect the entanglement

properties. However, the change must be more than a mere phase factor. Thus one

has to have a time evolution with a Hamiltonian, for which |Ψ〉 is not an eigenstate.

The simplest set-up is to make an instantaneous change

H0 → H1 (122)

After that

• The state |Ψ〉 evolves as |Ψ(t)〉 = e−iH1t|Ψ0〉.
• The total density matrix ρ evolves.

• The RDM’s ρα also evolve.

If H1 is a free-particle operator, the arguments work as before. If the initial state

was a Slater determinant, the correlation functions at time t

〈Ψ(t)|c†mc†nckcl|Ψ(t)〉 = 〈Ψ0|c†m(t)c†n(t)ck(t)cl(t)|Ψ0〉 (123)

factor again, because the Heisenberg operators ck(t) at time t are then linear

combinations of the initial ones. Therefore ρα(t) has the exponential form (38) but with

a time-dependent operator Hα(t) and the eigenvalues εl(t) follow from the correlation

matrix at time t

Ci,j(t) = 〈Ψ0| c†i(t) cj(t) |Ψ0〉 . (124)

Therefore, one only needs to determine the time evolution of the operators cj(t) in the

Heisenberg picture.

Physically, one finds a surprising phenomenon, namely the entanglement increases after

the quench

• In global quenches S ∼ t

• In local quenches, S ∼ ln t

We show this explicitly for two examples.
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5.2. Global quench

Hopping model

• Start from fully dimerized, half-filled model, only pairs of sites (2n, 2n + 1) are

coupled and correlated.

• Make it homogeneous with dispersion relation ωq = − cos q and let it evolve.

The time evolution of the Fermi operators then involves Bessel functions

cj(t) =
∑

m

ij−mJj−m(t)cm (125)

and the result for the correlation matrix is

Cm,n(t) =
1

2

[

δm,n +
1

2
(δn,m+1 + δn,m−1) + e−iπ

2
(m+n) i(m− n)

2t
Jm−n(2t)

]

(126)

The resulting single-particle spectra are shown on the left of Fig. 30.
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Figure 24. Global quench in a hopping model, starting with a fully dimerized initial

state. Left: Time evolution of the single-particle spectrum for a segment of L = 100

sites. Right: Entanglement entropy with the asymptotic value. From [30]. Copyright

IOP Publishing, reprinted with permission.

Features

• Dispersion linear near zero

• Slope decreases with time, S increases

• For times t≫ L/2 approach to a limiting curve, S saturates

The asymptotic form of the spectrum follows from the first three terms in (126) which

correspond to a tridiagonal correlation matrix and are the Fourier transform of the

constants 〈c†qcq〉 in the initial state. The eigenvalues for a segment are

ζl(∞) =
1

2
(1 + cos ql), ql =

π

L+ 1
l, l = 1, 2...L (127)

and lead to

εl(∞) = 2 ln tan(ql/2). (128)
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The spacing of the ql is proportional to 1/L and gives an extensive entropy S =

L(2 ln 2− 1).

The build-up of an extensive entropy is a typical signature of global quenches.

It has a simple physical interpretation due to Calabrese and Cardy [34] sketched in fig.

25.

• Particle-hole pairs are emitted

• Create entanglement between the subsystem and remainder

• Travel with maximum velocity v = 1

• “Light-cone effect”, S ∼ t as long as separation 2t < L

t

0

Figure 25. Creation of entanglement after a global quench by emitted particle-hole

pairs for the case of a segment in a chain.

The result is relevant for numerical calculations, because it means that one can follow the

evolution only for a limited time with DMRG. Beyond that, the state is too entangled

to be well approximated.

5.3. Local quench

Hopping model, set-up shown in fig. 26

Figure 26. Two variants of a local quench.

• Initially subsystem (center) decoupled from the rest

• Add bond(s) to create a homogeneous chain and let system evolve

The evolution of the Fermi operators is again given by (125), but the initial

condition is different. The calculation has to be done numerically. In fig. 27 the

result for S is shown.
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Figure 27. Entanglement entropy for the two geometries after the quench for a

subsystem of length L = 40. From [36]. Copyright IOP Publishing, reprinted with

permission.

Features

• “Entanglement bursts” after the connection

• Duration t = L (infinite case) and t = 2L (semi-infinite case)

• For larger times approach to equilibrium (dotted)

The plateau can be related to a front which starts from the initial defect site and

travels through the subsystem until it leaves it again. This is seen directly in the lowest

eigenvector in fig. 28. Using methods of conformal field theory, one can derive analytical

 10  20  30  40  50  60  70  80  90  100

Figure 28. Front propagation in the lowest single-particle eigenvector for the semi-

infinite geometry and L = 100. Shown are the times t = 20, 60, 120, 160. From [36].

Copyright IOP Publishing, reprinted with permission.

formulae for both cases [35, 36]

S(t) = ν
c

6
ln

[

4L

νπ
t sin

(

νπt

2L

)]

+ kν (129)

where ν is the number of contact points and kν is a constant which depends on the

geometry. This formula is in good agreement with the numerical data. For t ≪ L, it

gives a logarithmic entropy growth. If L→ ∞ this persists for all times.
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For numerical calculations, this is a more favourable situation. One can follow the

evolution a much longer time.

5.4. Periodic switching

An interesting effect appears if one connects and disconnects two half-chains periodi-

cally for a certain time τ . One can call this a periodic local quench. Numerical results

for the entanglement are shown in fig. 29.
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-S
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Figure 29. Entropy evolution for periodically connected chains and L = 40. Upper

curve: τ = 5, lower curve: τ = 1. From [1]. Copyright IOP publishing, reprinted with

permission.

Features

• Switching directly visible

• Rapid switching: logarithmic increase

• Slow switching: linear increase

The curve for rapid switching resembles the result for a single quench, compare fig. 27.

This can be understood as follows. The time-evolution operator for one period is

U = U0 U1 = e−iH0τe−iH1τ (130)

where H0 and H1 are the Hamiltonians for the the two configurations and do not

commute. However, for small τ , one can take the same Hamiltonian limit as for the

transfer matrices in section 3 and combine the exponentials. Then

U = e−iH̄2τ , H̄ =
1

2
(H0 +H1) (131)

The average time evolution therefore corresponds to a single local quench where the

final system has a defect with reduced hopping amplitude t′ = t/2 at the contact. For

such a case, the evolution of S is similar as for a quench to a homogeneous system and

the behavour is logarithmic in time.

The curve for slow switching rises on average linearly. The interpretation is

that here the disconnected system has enough time to “recover” and thereby the
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entanglement gain repeats itself after each new connection. The problem can be treated

analytically in a continuum model [37].

In general, one can express S in terms of the (time-dependent) cumulants of the

probability distribution Pn to transfer n particles. This provides a link to the so-called

“full counting statistics” of the junction and thus in principle to measurable quantities.

For the example given here, the distribution is Gaussian and only the second cumulant

enters.

5.5. Entanglement Hamiltonian and subsystem Hamiltonian

The thermal form of the RDM automatically leads to the question whether there is a

relation between Hα and Hα. In section 2.6 we have already seen that in general this is

not so. But are there cases, where a relation exists ?

The answer is yes. For example, it has been seen in Heisenberg ladders, where the

subsystem was chosen as one of the two legs. We discuss here an example, which is

somewhat simpler and a free-fermion model [38].

Figure 30. Ladder geometry for a fermionic hopping model.

The subsystem is chosen as one of the legs.

Consider a hopping model on a ladder with opposite dispersion in both legs and

hopping with amplitude δ between them. The Hamiltonian is

H = H1 +H2 +H ′ =
∑

q

γq a
†
qaq −

∑

q

γq b
†
qbq +

∑

q

δ (a†qbq + b†qaq) (132)

Diagonalizing (132) with a canonical transformation

aq = uqαq + vqβq, bq = −vqαq + uqβq, u2q + v2q = 1, (133)

one obtains

H =
∑

q

ωq(α
†
qαq − β†

qβq) , ωq =
√

γ2q + δ2 (134)

From that, one obtains the correlation matrix. Due to the translation invariance, it is

diagonal in momentum space and in the subsystem 1 of the a′s one has

ζq =< a†qaq >= v2q =
1

2
(1− γq

ωq

) (135)

This gives the single-particle eigenvalues

εq = ln

(

ωq + γq
ωq − γq

)

(136)
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and H1 has the form

H1 =
∑

q

εqa
†
qaq (137)

If now the rung hopping δ is large, one obtains εq = 2γq/δ and the relation

H1 =
2

δ
H1 (138)

This is a direct proportionality between the two Hamiltionians.

Remarks

• Holds for dominating rung couplings

• Follows from first-order perturbation theory in H1 +H2

• Entanglement near maximum S = L ln 2

• Entropy extensive due to long interface

For arbitrary δ, the single-particle energies εq and γq are not proportional to each

other. Therefore the hopping range in H1 is in general different from that in H1.

5.6. Concluding remarks

I have given an account of the entanglement properties of solvable models, either free

particle or integrable, and shown in particular that

• One is lead to a thermodynamic problem

• A particular Hamiltonian enters

• Its spectrum determines the Schmidt weights

• The ground states of homogeneous chains are weakly entangled

• Global quenches lead to strongly entangled states

Almost all considerations had to do with lattice models. These are the systems

one studies in numerical investigations motivated by solid state physics or uses in

quantum information. They also have the advantage that no divergencies appear in

finite geometries.

This does not mean that continuum systems are unimportant. The first calculations

of entanglement entropies took place in the context of black-hole theory and thus in a

continuum setting. And the use of conformal invariance has not only shown a deeper

connection between the various models but also allowed to derive many special results.

But that would be a lecture series in its own. Those who are interested can find a lot

of material in a special issue of J. Phys. A 42 (2009). There, entanglement for free

quantum fields is reviewed by Casini and Huerta [39] and within conformal field theory

by Calabrese and Cardy [40].
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[22] Legeza Ö and Fáth G 1996 Phys. Rev. B 53 14349

[23] Its A R, Jin B-Q and Korepin V E 2005 J. Phys. A: Math. Gen. 38 2975

[24] Yang C N 1952 Phys. Rev. 85 808

[25] Calabrese P and Cardy J L 2004 J. Stat. Mech. P06002

[26] Calabrese P, Cardy J and Peschel I 2010 J. Stat. Mech. P09003

[27] Ercolessi E, Evangelisti S, Franchini F and Ravanini F 2011 Phys. Rev. B 83 012402

[28] Chung M-C and Peschel I 2000 Phys. Rev. B 62 4191

[29] Eisler V and Peschel I 2010 Ann. Physik (Berlin) 522 679
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