36 research outputs found

    Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    Get PDF
    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response

    Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof

    Get PDF
    A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures

    Thermally Resilient, Broadband Optical Absorber from UV to IR Derived from Carbon Nanostructures

    Get PDF
    Optical absorber coatings have been developed from carbon-based paints, metal blacks, or glassy carbon. However, such materials are not truly black and have poor absorption characteristics at longer wavelengths. The blackness of such coatings is important to increase the accuracy of calibration targets used in radiometric imaging spectrometers since blackbody cavities are prohibitively large in size. Such coatings are also useful potentially for thermal detectors, where a broadband absorber is desired. Au-black has been a commonly used broadband optical absorber, but it is very fragile and can easily be damaged by heat and mechanical vibration. An optically efficient, thermally rugged absorber could also be beneficial for thermal solar cell applications for energy harnessing, particularly in the 350-2,500 nm spectral window. It has been demonstrated that arrays of vertically oriented carbon nanotubes (CNTs), specifically multi-walled-carbon- nanotubes (MWCNTs), are an exceptional optical absorber over a broad range of wavelengths well into the infrared (IR). The reflectance of such arrays is 100x lower compared to conventional black materials, such as Au black in the spectral window of 350-2,500 nm. Total hemispherical measurements revealed a reflectance of approximately equal to 1.7% at lambda approximately equal to 1 micrometer, and at longer wavelengths into the infrared (IR), the specular reflectance was approximately equal to 2.4% at lambda approximately equal to 7 micrometers. The previously synthesized CNTs for optical absorber applications were formed using water-assisted thermal chemical vapor deposition (CVD), which yields CNT lengths in excess of 100's of microns. Vertical alignment, deemed to be a critical feature in enabling the high optical absorption from CNT arrays, occurs primarily via the crowding effect with thermal CVD synthesized CNTs, which is generally not effective in aligning CNTs with lengths less than 10 m. Here it has been shown that the electric field inherent in a plasma yields vertically aligned CNTs at small length scales (less than 10 m), which still exhibit broadband, and high-efficiency optical absorption characteristics from the ultraviolet (UV) to IR. A thin and yet highly absorbing coating is extremely valuable for detector applications for radiometry in order to enhance sensitivity. A plasma-based process also increases the potential of forming the optical absorbers at lower synthesis temperatures in the future, increasing the prospects of integrating the absorbers with flexible substrates for low-cost solar cell applications, for example

    Carbon Nanofibers Synthesized on Selective Substrates for Nonvolatile Memory and 3D Electronics

    Get PDF
    A plasma-enhanced chemical vapor deposition (PECVD) growth technique has been developed where the choice of starting substrate was found to influence the electrical characteristics of the resulting carbon nanofiber (CNF) tubes. It has been determined that, if the tubes are grown on refractory metallic nitride substrates, then the resulting tubes formed with dc PECVD are also electrically conducting. Individual CNFs were formed by first patterning Ni catalyst islands using ebeam evaporation and liftoff. The CNFs were then synthesized using dc PECVD with C2H2:NH3 = [1:4] at 5 Torr and 700 C, and approximately equal to 200-W plasma power. Tubes were grown directly on degenerately doped silicon substrates with resistivity rho approximately equal to 1-5 meterohm-centimeter, as well as NbTiN. The approximately equal to 200-nanometer thick refractory NbTiN deposited using magnetron sputtering had rho approximately equal to 113 microohm-centimeter and was also chemically compatible with CNF synthesis. The sample was then mounted on a 45 beveled Al holder, and placed inside a SEM (scanning electron microscope). A nanomanipulator probe stage was placed inside the SEM equipped with an electrical feed-through, where tungsten probes were used to make two-terminal electrical measurements with an HP 4156C parameter analyzer. The positive terminal nanoprobe was mechanically manipulated to physically contact an individual CNF grown directly on NbTiN as shown by the SEM image in the inset of figure (a), while the negative terminal was grounded to the substrate. This revealed the tube was electrically conductive, although measureable currents could not be detected until approximately equal to 6 V, after which point current increased sharply until compliance (approximately equal to 50 nA) was reached at approximately equal to 9.5 V. A native oxide on the tungsten probe tips may contribute to a tunnel barrier, which could be the reason for the suppressed transport at low biases. Currents up to approximately 100 nA could be cycled, which are likely to propagate via the tube surface, or sidewalls, rather than the body, which is shown by the I-V in figure (a). Electrical conduction via the sidewalls is a necessity for dc NEMS (nanoelectromechanical system) applications, more so than for the field emission applications of such tubes. During the tests, high conductivity was expected, because both probes were shorted to the substrate, as shown by curve 1 in the I-V characteristic in figure (b). When a tube grown on NbTiN was probed, the response was similar to the approximately equal to 100 nA and is represented by curve 2 in figure (b), which could be cycled and propagated via the tube surface or the sidewalls. However, no measureable currents for the tube grown directly on Si were observed as shown by curve 3 in figure (b), even after testing over a range of samples. This could arise from a dielectric coating on the sidewalls for tubes on Si. As a result of the directional nature of ion bombardment during dc PECVD, Si from the substrate is likely re-sputtered and possibly coats the sidewalls

    In situ characterization of vertically oriented carbon nanofibers for three-dimensional nano-electro-mechanical device applications

    Get PDF
    We have performed mechanical and electrical characterization of individual as-grown, vertically oriented carbon nanofibers (CNFs) using in situ techniques, where such high-aspect-ratio, nanoscale structures are of interest for three-dimensional (3D) electronics, in particular 3D nano-electro-mechanical-systems (NEMS). Nanoindentation and uniaxial compression tests conducted in an in situ nanomechanical instrument, SEMentor, suggest that the CNFs undergo severe bending prior to fracture, which always occurs close to the bottom rather than at the substrate–tube interface, suggesting that the CNFs are well adhered to the substrate. This is also consistent with bending tests on individual tubes which indicated that bending angles as large as ~70° could be accommodated elastically. In situ electrical transport measurements revealed that the CNFs grown on refractory metallic nitride buffer layers were conducting via the sidewalls, whereas those synthesized directly on Si were electrically unsuitable for low-voltage dc NEMS applications. Electrostatic actuation was also demonstrated with a nanoprobe in close proximity to a single CNF and suggests that such structures are attractive for nonvolatile memory applications. Since the magnitude of the actuation voltage is intimately dictated by the physical characteristics of the CNFs, such as diameter and length, we also addressed the ability to tune these parameters, to some extent, by adjusting the plasma-enhanced chemical vapor deposition growth parameters with this bottom-up synthesis approach

    Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    Get PDF
    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown, lithographically fabricated ap - proaches to form cantilever or bridgetype structures. Top-down approaches, however, rely on complicated and expensive e-beam lithography, and often require a release mechanism. Reso - nance effects in structures synthesized using bottom-up approaches have also recently been reported based on carbon nanotubes, but such approaches have relied on a planar two-dimensional (2D) geometry. In this innovation, vertically aligned tubes synthesized using a bottom- up approach have been considered, where the vertical orientation of the tubes has the potential to increase integration density even further. The simulation of a vertically oriented, cantilevered carbon nanotube was performed using COMSOL Multi - physics, a finite element simulation package. All simulations were performed in a 2D geometry that provided consistent results and minimized computational complexity. The simulations assumed a vertically oriented, cantilevered nanotube of uniform density (1.5 g/cu cm). An elastic modulus was assumed to be 600 GPa, relative permittivity of the nanotube was assumed to be 5.0, and Poisson s ratio was assumed to be 0.2. It should be noted that the relative permittivity and Poisson s ratio for the nanotubes of interest are not known accurately. However, as in previous simulations, the relative permittivity and Poisson s ratios were treated as weak variables in the simulation, and no significant changes were recognized when these variables were varied

    Applications and Methods of Operating a Three-dimensional Nano-electro-mechanical Resonator and Related Devices

    Get PDF
    Carbon nanofiber resonator devices, methods for use, and applications of said devices are disclosed. Carbon nanofiber resonator devices can be utilized in or as high Q resonators. Resonant frequency of these devices is a function of configuration of various conducting components within these devices. Such devices can find use, for example, in filtering and chemical detection

    Fabrication of wide-IF 200–300 GHz superconductor–insulator–superconductor mixers with suspended metal beam leads formed on silicon-on-insulator

    Get PDF
    We report on a fabrication process that uses SOI substrates and micromachining techniques to form wide-IF SIS mixer devices that have suspended metal beam leads for rf grounding. The mixers are formed on thin 25 µm membranes of Si, and are designed to operate in the 200–300 GHz band. Potential applications are in tropospheric chemistry, where increased sensitivity detectors and wide-IF bandwidth receivers are desired. They will also be useful in astrophysics to monitor absorption lines for CO at 230 GHz to study distant, highly redshifted galaxies by reducing scan times. Aside from a description of the fabrication process, electrical measurements of these Nb/Al–AlNx/Nb trilayer devices will also be presented. Since device quality is sensitive to thermal excursions, the new beam lead process appears to be compatible with conventional SIS device fabrication technology

    Carbon nanotube switches for memory, RF communications and sensing applications, and methods of making the same

    Get PDF
    Switches having an in situ grown carbon nanotube as an element thereof, and methods of fabricating such switches. A carbon nanotube is grown in situ in mechanical connection with a conductive substrate, such as a heavily doped silicon wafer or an SOI wafer. The carbon nanotube is electrically connected at one location to a terminal. At another location of the carbon nanotube there is situated a pull electrode that can be used to elecrostatically displace the carbon nanotube so that it selectively makes contact with either the pull electrode or with a contact electrode. Connection to the pull electrode is sufficient to operate the device as a simple switch, while connection to a contact electrode is useful to operate the device in a manner analogous to a relay. In various embodiments, the devices disclosed are useful as at least switches for various signals, multi-state memory, computational devices, and multiplexers
    corecore