236 research outputs found

    Two-dimensional projections of an hypercube

    Get PDF
    We present a method to project a hypercube of arbitrary dimension on the plane, in such a way as to preserve, as well as possible, the distribution of distances between vertices. The method relies on a Montecarlo optimization procedure that minimizes the squared difference between distances in the plane and in the hypercube, appropriately weighted. The plane projections provide a convenient way of visualization for dynamical processes taking place on the hypercube.Comment: 4 pages, 3 figures, Revtex

    Estimating the conditions for polariton condensation in organic thin-film microcavities

    Full text link
    We examine the possibility of observing Bose condensation of a confined two-dimensional polariton gas in an organic quantum well. We deduce a suitable parameterization of a model Hamiltonian based upon the cavity geometry, the biexciton binding energy, and similar spectroscopic and structural data. By converting the sum-over-states to a semiclassical integration over dd-dimensional phase space, we show that while an ideal 2-D Bose gas will not undergo condensation, an interacting gas with the Bogoliubov dispersion H(p)spH(p)\approx s p close to p=0p=0 will undergo Bose condensation at a given critical density and temperature. We show that Tc/ρcT_c/\sqrt{\rho_c} is sensitive to both the cavity geometry and to the biexciton binding energy. In particular, for strongly bound biexcitons, the non-linear interaction term appearing in the Gross-Pitaevskii equation becomes negative and the resulting ground state will be a localized soliton state rather than a delocalized Bose condensate.Comment: 2 figure

    Production of a pseudo-scalar Higgs boson at hadron colliders at next-to-next-to leading order

    Get PDF
    The production cross section for pseudo-scalar Higgs bosons at hadron colliders is computed at next-to-next-to-leading order (NNLO) in QCD. The pseudo-scalar Higgs is assumed to couple only to top quarks. The NNLO effects are evaluated using an effective lagrangian where the top quarks are integrated out. The NNLO corrections are similar in size to those found for scalar Higgs boson production.Comment: 20 pages, 6 figures, JHEP style, Minor changes, Journal reference adde

    Combinatorial expression for universal Vassiliev link invariant

    Full text link
    The most general R-matrix type state sum model for link invariants is constructed. It contains in itself all R-matrix invariants and is a generating function for "universal" Vassiliev link invariants. This expression is more simple than Kontsevich's expression for the same quantity, because it is defined combinatorially and does not contain any integrals, except for an expression for "the universal Drinfeld's associator".Comment: 20 page

    Smooth operator? Understanding and visualising mutation bias

    No full text
    The potential for mutation operators to adversely affect the behaviour of evolutionary algorithms is demonstrated for both real-valued and discrete-valued genotypes. Attention is drawn to the utility of effective visualisation techniques and explanatory concepts in identifying and understanding these biases. The skewness of a mutation distribution is identified as a crucial determinant of its bias. For redundant discrete genotype-phenotype mappings intended to exploit neutrality in genotype space, it is demonstrated that in addition to the mere extent of phenotypic connectivity achieved by these schemes, the distribution of phenotypic connectivity may be critical in determining whether neutral networks improve the ability of an evolutionary algorithm overall. Mutation operators lie at the heart of evolutionary algorithms. They corrupt the reproduction of genotypes, introducing the variety that fuels natural selection. However, until recently, the process of mutation has taken..

    Damage Spreading During Domain Growth

    Full text link
    We study damage spreading in models of two-dimensional systems undergoing first order phase transitions. We consider several models from the same non-conserved order parameter universality class, and find unexpected differences between them. An exact solution of the Ohta-Jasnow-Kawasaki model yields the damage growth law DtϕD \sim t^{\phi}, where ϕ=td/4\phi = t^{d/4} in dd dimensions. In contrast, time-dependent Ginzburg-Landau simulations and Ising simulations in d=2d= 2 using heat-bath dynamics show power-law growth, but with an exponent of approximately 0.360.36, independent of the system sizes studied. In marked contrast, Metropolis dynamics shows damage growing via ϕ1\phi \sim 1, although the damage difference grows as t0.4t^{0.4}. PACS: 64.60.-i, 05.50.+qComment: 4 pags of revtex3 + 3 postscript files appended as a compressed and uuencoded file. UIB940320

    Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution

    Full text link
    We compare and contrast the long-time dynamical properties of two individual-based models of biological coevolution. Selection occurs via multispecies, stochastic population dynamics with reproduction probabilities that depend nonlinearly on the population densities of all species resident in the community. New species are introduced through mutation. Both models are amenable to exact linear stability analysis, and we compare the analytic results with large-scale kinetic Monte Carlo simulations, obtaining the population size as a function of an average interspecies interaction strength. Over time, the models self-optimize through mutation and selection to approximately maximize a community fitness function, subject only to constraints internal to the particular model. If the interspecies interactions are randomly distributed on an interval including positive values, the system evolves toward self-sustaining, mutualistic communities. In contrast, for the predator-prey case the matrix of interactions is antisymmetric, and a nonzero population size must be sustained by an external resource. Time series of the diversity and population size for both models show approximate 1/f noise and power-law distributions for the lifetimes of communities and species. For the mutualistic model, these two lifetime distributions have the same exponent, while their exponents are different for the predator-prey model. The difference is probably due to greater resilience toward mass extinctions in the food-web like communities produced by the predator-prey model.Comment: 26 pages, 12 figures. Discussion of early-time dynamics added. J. Math. Biol., in pres

    Pareto Local Optima of Multiobjective NK-Landscapes with Correlated Objectives

    Get PDF
    International audienceIn this paper, we conduct a fitness landscape analysis for multiobjective combinatorial optimization, based on the local optima of multiobjective NK-landscapes with objective correlation. In single-objective optimization, it has become clear that local optima have a strong impact on the performance of metaheuristics. Here, we propose an extension to the multiobjective case, based on the Pareto dominance. We study the co-influence of the problem dimension, the degree of non-linearity, the number of objectives and the correlation degree between objective functions on the number of Pareto local optima
    corecore