5,389 research outputs found

    Kauffman Knot Invariant from SO(N) or Sp(N) Chern-Simons theory and the Potts Model

    Full text link
    The expectation value of Wilson loop operators in three-dimensional SO(N) Chern-Simons gauge theory gives a known knot invariant: the Kauffman polynomial. Here this result is derived, at the first order, via a simple variational method. With the same procedure the skein relation for Sp(N) are also obtained. Jones polynomial arises as special cases: Sp(2), SO(-2) and SL(2,R). These results are confirmed and extended up to the second order, by means of perturbation theory, which moreover let us establish a duality relation between SO(+/-N) and Sp(-/+N) invariants. A correspondence between the firsts orders in perturbation theory of SO(-2), Sp(2) or SU(2) Chern-Simons quantum holonomies and the partition function of the Q=4 Potts Model is built.Comment: 20 pages, 7 figures; accepted for publication on Phys. Rev.

    Production of a Higgs pseudoscalar plus two jets in hadronic collisions

    Get PDF
    We consider the production of a Higgs pseudoscalar accompanied by two jets in hadronic collisions. We work in the limit that the top quark is much heavier than the Higgs pseudoscalar and use an effective Lagrangian for the interactions of gluons with the pseudoscalar. We compute the amplitudes involving: 1) four gluons and the pseudoscalar, 2) two quarks, two gluons and the pseudoscalar and 3) four quarks and the pseudoscalar. We find that the pseudoscalar amplitudes are nearly identical to those for the scalar case, the only differences being the overall size and the relative signs between terms. We present numerical cross sections for proton-proton collisions with center-of-mass energy 14 TeV.Comment: 12 pages, LaTeX, 4 Postscript figures, submitted to Phys. Rev.

    Residue network in protein native structure belongs to the universality class of three dimensional critical percolation cluster

    Full text link
    A single protein molecule is regarded as a contact network of amino-acid residues. Some studies have indicated that this network is a small world network (SWN), while other results have implied that this is a fractal network (FN). However, SWN and FN are essentially different in the dependence of the shortest path length on the number of nodes. In this paper, we investigate this dependence in the residue contact networks of proteins in native structures, and show that the networks are not SWN but FN. FN is generally characterized by several dimensions. Among them, we focus on three dimensions; the network topological dimension DcD_c, the fractal dimension DfD_f, and the spectral dimension DsD_s. We find that proteins universally yield Dc1.9D_c \approx 1.9, Df2.5D_f \approx 2.5 and Ds1.3Ds \approx 1.3. These values are in surprisingly good coincidence with those in three dimensional critical percolation cluster. Hence the residue contact networks in the protein native structures belong to the universality class of three dimensional percolation cluster. The criticality is relevant to the ambivalent nature of the protein native structures, i.e., the coexistence of stability and instability, both of which are necessary for a protein to function as a molecular machine or an allosteric enzyme.Comment: 4 pages, 3 figure

    Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory

    Full text link
    This paper is a concise introduction to virtual knot theory, coupled with a list of research problems in this field.Comment: 65 pages, 24 figures. arXiv admin note: text overlap with arXiv:math/040542

    Quantum entanglement: The unitary 8-vertex braid matrix with imaginary rapidity

    Full text link
    We study quantum entanglements induced on product states by the action of 8-vertex braid matrices, rendered unitary with purely imaginary spectral parameters (rapidity). The unitarity is displayed via the "canonical factorization" of the coefficients of the projectors spanning the basis. This adds one more new facet to the famous and fascinating features of the 8-vertex model. The double periodicity and the analytic properties of the elliptic functions involved lead to a rich structure of the 3-tangle quantifying the entanglement. We thus explore the complex relationship between topological and quantum entanglement.Comment: 4 pages in REVTeX format, 2 figure

    Complex-network analysis of combinatorial spaces: The NK landscape case

    Full text link
    We propose a network characterization of combinatorial fitness landscapes by adapting the notion of inherent networks proposed for energy surfaces. We use the well-known family of NK landscapes as an example. In our case the inherent network is the graph whose vertices represent the local maxima in the landscape, and the edges account for the transition probabilities between their corresponding basins of attraction. We exhaustively extracted such networks on representative NK landscape instances, and performed a statistical characterization of their properties. We found that most of these network properties are related to the search difficulty on the underlying NK landscapes with varying values of K.Comment: arXiv admin note: substantial text overlap with arXiv:0810.3492, arXiv:0810.348

    Self-organized Networks of Competing Boolean Agents

    Full text link
    A model of Boolean agents competing in a market is presented where each agent bases his action on information obtained from a small group of other agents. The agents play a competitive game that rewards those in the minority. After a long time interval, the poorest player's strategy is changed randomly, and the process is repeated. Eventually the network evolves to a stationary but intermittent state where random mutation of the worst strategy can change the behavior of the entire network, often causing a switch in the dynamics between attractors of vastly different lengths.Comment: 4 pages, 3 included figures. Some text revision and one new figure added. To appear in PR

    Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics

    Full text link
    Linearized catalytic reaction equations modeling e.g. the dynamics of genetic regulatory networks under the constraint that expression levels, i.e. molecular concentrations of nucleic material are positive, exhibit nontrivial dynamical properties, which depend on the average connectivity of the reaction network. In these systems the inflation of the edge of chaos and multi-stability have been demonstrated to exist. The positivity constraint introduces a nonlinearity which makes chaotic dynamics possible. Despite the simplicity of such minimally nonlinear systems, their basic properties allow to understand fundamental dynamical properties of complex biological reaction networks. We analyze the Lyapunov spectrum, determine the probability to find stationary oscillating solutions, demonstrate the effect of the nonlinearity on the effective in- and out-degree of the active interaction network and study how the frequency distributions of oscillatory modes of such system depend on the average connectivity.Comment: 11 pages, 5 figure
    corecore