127 research outputs found

    Bison Influences on Composition and Diversity of Riparian Plant Communities in Yellowstone National Park

    Get PDF
    Riparian zones are among the most biologically diverse ecosystems in the Intermountain West, USA, and provide valuable ecosystem services, including high rates of biotic productivity, nutrient processing, and carbon storage. Thus, their sustainability is a high priority for land managers. Large ungulates affect composition and structure of riparian/stream ecosystems through herbivory and physical effects, via trailing and trampling. Bison (Bison bison) in Yellowstone National Park (YNP) have been characterized as ecosystem engineers because of their demonstrated effects on phenology, aboveground productivity of grasses, and woody vegetation structure. Bison have greatly increased in numbers during the last two decades and spend large periods of time in the broad open floodplains of the Northern Range of the Park, where they are hypothesized to have multiple effects on plant species composition and diversity. We sampled indicators of bison use as well as riparian vegetation composition, diversity, and structure along eight headwater streams within YNP\u27s Northern Range. Total fecal density ranged from 333 to 1833 fecal chips and/or piles/ha, stubble heights ranged from 7 to 49 cm, and streambank disturbance ranged from 9% to 62%. High levels of bison use were positively correlated with exotic species dominance and negatively correlated with species richness, native species diversity, willow (Salix spp.) cover, and wetland species dominance. At three sites, the intensity of bison use exceeded recommended utilization thresholds to avoid degradation of streams and riparian zones on public lands. The influences of large herbivores, principally bison, on vegetation composition and structure suggest the cumulative effects of the current densities on the Northern Range are contributing to biotic impoverishment, representing the loss of ecosystem services that are provided by native riparian plant communities. In addition, contemporary levels of bison use may be exacerbating climate change effects as observed through ungulate-related shifts in composition toward plant assemblages adapted to warmer and drier conditions. However, the resilience of native riparian vegetation suggests that sites currently heavily utilized by bison would have the potential for recovery with a reduction in pressure by this herbivore

    Bison influences on composition and diversity of riparian plant communities in Yellowstone National Park

    Get PDF
    Riparian zones are among the most biologically diverse ecosystems in the Intermountain West, USA, and provide valuable ecosystem services, including high rates of biotic productivity, nutrient processing, and carbon storage. Thus, their sustainability is a high priority for land managers. Large ungulates affect composition and structure of riparian/stream ecosystems through herbivory and physical effects, via trailing and trampling. Bison (Bison bison) in Yellowstone National Park (YNP) have been characterized as “ecosystem engineers” because of their demonstrated effects on phenology, aboveground productivity of grasses, and woody vegetation structure. Bison have greatly increased in numbers during the last two decades and spend large periods of time in the broad open floodplains of the Northern Range of the Park, where they are hypothesized to have multiple effects on plant species composition and diversity. We sampled indicators of bison use as well as riparian vegetation composition, diversity, and structure along eight headwater streams within YNP’s Northern Range. Total fecal density ranged from 333 to 1833 fecal chips and/or piles/ha, stubble heights ranged from 7 to 49 cm, and streambank disturbance ranged from 9% to 62%. High levels of bison use were positively correlated with exotic species dominance and negatively correlated with species richness, native species diversity, willow (Salix spp.) cover, and wetland species dominance. At three sites, the intensity of bison use exceeded recommended utilization thresholds to avoid degradation of streams and riparian zones on public lands. The influences of large herbivores, principally bison, on vegetation composition and structure suggest the cumulative effects of the current densities on the Northern Range are contributing to biotic impoverishment, representing the loss of ecosystem services that are provided by native riparian plant communities. In addition, contemporary levels of bison use may be exacerbating climate change effects as observed through ungulate-related shifts in composition toward plant assemblages adapted to warmer and drier conditions. However, the resilience of native riparian vegetation suggests that sites currently heavily utilized by bison would have the potential for recovery with a reduction in pressure by this herbivore

    Biomass and nutrient dynamics associated with slash fires in neotropical dry forests

    Get PDF
    Unprecedented rates of deforestation and biomass burning in tropical dry forests are dramatically influencing biogeochemical cycles, resulting in resource depletion, declines in biodiversity, and atmospheric pollution. We quantified the effects of defores- tation and varying levels of slash-fire severity on nutrient losses and redistribution in a second-growth tropical dry forest ("Caatinga") near Serra Talhada, Pernambuco, Brazil. Total aboveground biomass prior to burning was 74 Mg/ha. Nitrogen and phosphorus concentrations were highest in litter, leaves attached to slash, and fine wood debris (<0.64 cm diameter). While these components comprised only 30% of the prefire aboveground biomass, they accounted for -60% of the aboveground pools of N and P. Three experi- mental fires were conducted during the 1989 burning season. In these treatments con- sumption was 78, 88, and 95% of the total aboveground biomass. As much as 96% of the prefire aboveground N and C pools and 56% of the prefire aboveground P pool was lost during combustion processes. Nitrogen losses exceeded 500 kg/ha and P losses exceeded 20 kg/ha in the fires of the greatest severity. With increasing fire severity, the concentrations of N and P in ash decreased while the concentration of Ca increased. This indicates greater amounts of these nutrients were volatilized (i.e., greater ecosystem losses occurred) with increasing fire severity. Following fire, up to 47% of the residual aboveground N and 84% of the residual aboveground P were in the form of ash, which was quickly lost from the site via wind erosion. Fires appeared to have a minor immediate effect on total N, C, or P in the soils. However, soils in forests with no history of cultivation had significantly higher concentrations of C and P than second-growth forests. Based upon the measured losses of nutrients from these single slash-burning events, it would likely require a century or more of fallow for reaccumulation to occur. However, current fallow periods in this region are 15 yr or less
    corecore