412 research outputs found

    Patent Human Infections with the Whipworm, Trichuris trichiura, Are Not Associated with Alterations in the Faecal Microbiota

    Get PDF
    Background: The soil-transmitted helminth (STH), Trichuris trichiura colonises the human large intestine where it may modify inflammatory responses, an effect possibly mediated through alterations in the intestinal microbiota. We hypothesised that patent T. trichiura infections would be associated with altered faecal microbiota and that anthelmintic treatment would induce a microbiota resembling more closely that observed in uninfected individuals. Materials and Methods: School children in Ecuador were screened for STH infections and allocated to 3 groups: uninfected, T. trichiura only, and mixed infections with T. trichiura and Ascaris lumbricoides. A sample of uninfected children and those with T. trichiura infections only were given anthelmintic treatment. Bacterial community profiles in faecal samples were studied by 454 pyrosequencing of 16 S rRNA genes. Results: Microbiota analyses of faeces were done for 97 children: 30 were uninfected, 17 were infected with T. trichiura, and 50 with T. trichiura and A. lumbricoides. Post-treatment samples were analyzed for 14 children initially infected with T. trichiura alone and for 21 uninfected children. Treatment resulted in 100% cure of STH infections. Comparisons of the microbiota at different taxonomic levels showed no statistically significant differences in composition between uninfected children and those with T. trichiura infections. We observed a decreased proportional abundance of a few bacterial genera from the Clostridia class of Firmicutes and a reduced bacterial diversity among children with mixed infections compared to the other two groups, indicating a possible specific effect of A. lumbricoides infection. Anthelmintic treatment of children with T. trichiura did not alter faecal microbiota composition. Discussion: Our data indicate that patent human infections with T. trichiura may have no effect on faecal microbiota but that A. lumbricoides colonisation might be associated with a disturbed microbiota. Our results also catalogue the microbiota of rural Ecuadorians and indicate differences with individuals from more urban industrialised societies

    Association of Fecal Microbial Diversity and Taxonomy with Selected Enzymatic Functions

    Get PDF
    Few microbial functions have been compared to a comprehensive survey of the human fecal microbiome. We evaluated determinants of fecal microbial Ξ²-glucuronidase and Ξ²-glucosidase activities, focusing especially on associations with microbial alpha and beta diversity and taxonomy. We enrolled 51 healthy volunteers (26 female, mean age 39) who provided questionnaire data and multiple aliquots of a stool, from which proteins were extracted to quantify Ξ²-glucuronidase and Ξ²-glucosidase activities, and DNA was extracted to amplify and pyrosequence 16S rRNA gene sequences to classify and quantify microbiome diversity and taxonomy. Fecal Ξ²-glucuronidase was elevated with weight loss of at least 5 lb. (Pβ€Š=β€Š0.03), whereas Ξ²-glucosidase was marginally reduced in the four vegetarians (Pβ€Š=β€Š0.06). Both enzymes were correlated directly with microbiome richness and alpha diversity measures, directly with the abundance of four Firmicutes Clostridia genera, and inversely with the abundance of two other genera (Firmicutes Lactobacillales Streptococcus and Bacteroidetes Rikenellaceae Alistipes) (all Pβ€Š=β€Š0.05–0.0001). Beta diversity reflected the taxonomic associations. These observations suggest that these enzymatic functions are performed by particular taxa and that diversity indices may serve as surrogates of bacterial functions. Independent validation and deeper understanding of these associations are needed, particularly to characterize functions and pathways that may be amenable to manipulation

    Analyses of the Microbial Diversity across the Human Microbiome

    Get PDF
    Analysis of human body microbial diversity is fundamental to understanding community structure, biology and ecology. The National Institutes of Health Human Microbiome Project (HMP) has provided an unprecedented opportunity to examine microbial diversity within and across body habitats and individuals through pyrosequencing-based profiling of 16 S rRNA gene sequences (16 S) from habits of the oral, skin, distal gut, and vaginal body regions from over 200 healthy individuals enabling the application of statistical techniques. In this study, two approaches were applied to elucidate the nature and extent of human microbiome diversity. First, bootstrap and parametric curve fitting techniques were evaluated to estimate the maximum number of unique taxa, Smax, and taxa discovery rate for habitats across individuals. Next, our results demonstrated that the variation of diversity within low abundant taxa across habitats and individuals was not sufficiently quantified with standard ecological diversity indices. This impact from low abundant taxa motivated us to introduce a novel rank-based diversity measure, the Tail statistic, (β€œΟ„β€), based on the standard deviation of the rank abundance curve if made symmetric by reflection around the most abundant taxon. Due to τ’s greater sensitivity to low abundant taxa, its application to diversity estimation of taxonomic units using taxonomic dependent and independent methods revealed a greater range of values recovered between individuals versus body habitats, and different patterns of diversity within habitats. The greatest range of Ο„ values within and across individuals was found in stool, which also exhibited the most undiscovered taxa. Oral and skin habitats revealed variable diversity patterns, while vaginal habitats were consistently the least diverse. Collectively, these results demonstrate the importance, and motivate the introduction, of several visualization and analysis methods tuned specifically for next-generation sequence data, further revealing that low abundant taxa serve as an important reservoir of genetic diversity in the human microbiome

    Impact of IL-28B polymorphisms on pegylated interferon plus ribavirin treatment response in children and adolescents infected with HCV genotypes 1 and 4

    Get PDF
    IL-28B polymorphisms are predictors of response to therapy in adults infected with hepatitis C. We do not know whether they are markers of response to therapy in children and adolescents. The aim of this study was to determine whether single-nucleotide polymorphisms (SNPs) in the IL-28B gene could influence the probability of response to therapy compared with other known baseline prognostic factors and correlate with clinical findings in pediatric patients infected with hepatitis C virus (HCV) genotypes 1 or 4. We determined three SNPs of IL-28B (rs12979860, rs12980275, and rs8099917) in 82 patients with chronic HCV infection treated with pegylated interferon alpha and ribavirin (peg-IFNΞ±/RBV). Treatment response and clinical data were analyzed. Overall, sustained virological response (SVR) was achieved by 45 % of patients infected with difficult-to-treat HCV genotypes 1 and 4. Except for IL-28B polymorphisms, there was no association of SVR with any other clinical data. IL-28B rs12979860 CC [odds ratio (OR), 6.81; p = 0.001] and rs8099917 TT (OR, 3.14; p = 0.013) genotypes were associated with higher SVR rates. IL-28B rs12980275 was not significantly associated with SVR ( p = 0.058). Only the distribution between CC and CT-TT genotypes of rs12979860 significantly differentiated patients achieving early virological response (EVR) (OR, 10.0; p = 0.011). Children with the rs12979860 CC genotype had significantly higher baseline viral load compared with CT-TT patients ( p = 0.010). In children and adolescents chronically infected with HCV genotypes 1 and 4, IL-28B rs12979860 and rs8099917 polymorphisms were the only predictors of response to peg-IFN/RBV

    Distinctive Gut Microbiota of Honey Bees Assessed Using Deep Sampling from Individual Worker Bees

    Get PDF
    Surveys of 16S rDNA sequences from the honey bee, Apis mellifera, have revealed the presence of eight distinctive bacterial phylotypes in intestinal tracts of adult worker bees. Because previous studies have been limited to relatively few sequences from samples pooled from multiple hosts, the extent of variation in this microbiota among individuals within and between colonies and locations has been unclear. We surveyed the gut microbiota of 40 individual workers from two sites, Arizona and Maryland USA, sampling four colonies per site. Universal primers were used to amplify regions of 16S ribosomal RNA genes, and amplicons were sequenced using 454 pyrotag methods, enabling analysis of about 330,000 bacterial reads. Over 99% of these sequences belonged to clusters for which the first blastn hits in GenBank were members of the known bee phylotypes. Four phylotypes, one within Gammaproteobacteria (corresponding to β€œCandidatus Gilliamella apicola”) one within Betaproteobacteria (β€œCandidatus Snodgrassella alvi”), and two within Lactobacillus, were present in every bee, though their frequencies varied. The same typical bacterial phylotypes were present in all colonies and at both sites. Community profiles differed significantly among colonies and between sites, mostly due to the presence in some Arizona colonies of two species of Enterobacteriaceae not retrieved previously from bees. Analysis of Sanger sequences of rRNA of the Snodgrassella and Gilliamella phylotypes revealed that single bees contain numerous distinct strains of each phylotype. Strains showed some differentiation between localities, especially for the Snodgrassella phylotype

    Impact of the Resident Microbiota on the Nutritional Phenotype of Drosophila melanogaster

    Get PDF
    Background: Animals are chronically infected by benign and beneficial microorganisms that generally promote animal health through their effects on the nutrition, immune function and other physiological systems of the host. Insight into the host-microbial interactions can be obtained by comparing the traits of animals experimentally deprived of their microbiota and untreated animals. Drosophila melanogaster is an experimentally tractable system to study host-microbial interactions. Methodology/Principal Findings: The nutritional significance of the microbiota was investigated in D. melanogaster bearing unmanipulated microbiota, demonstrated by 454 sequencing of 16S rRNA amplicons to be dominated by the a-proteobacterium Acetobacter, and experimentally deprived of the microbiota by egg dechorionation (conventional and axenic flies, respectively). In axenic flies, larval development rate was depressed with no effect on adult size relative to conventional flies, indicating that the microbiota promotes larval growth rates. Female fecundity did not differ significantly between conventional and axenic flies, but axenic flies had significantly reduced metabolic rate and altered carbohydrate allocation, including elevated glucose levels. Conclusions/Significance: We have shown that elimination of the resident microbiota extends larval development and perturbs energy homeostasis and carbohydrate allocation patterns of of D. melanogaster. Our results indicate that th

    The chemical interactome space between the human host and the genetically defined gut metabotypes

    Get PDF
    The bacteria that colonize the gastrointestinal tracts of mammals represent a highly selected microbiome that has a profound influence on human physiology by shaping the host's metabolic and immune system activity. Despite the recent advances on the biological principles that underlie microbial symbiosis in the gut of mammals, mechanistic understanding of the contributions of the gut microbiome and how variations in the metabotypes are linked to the host health are obscure. Here, we mapped the entire metabolic potential of the gut microbiome based solely on metagenomics sequencing data derived from fecal samples of 124 Europeans (healthy, obese and with inflammatory bowel disease). Interestingly, three distinct clusters of individuals with high, medium and low metabolic potential were observed. By illustrating these results in the context of bacterial population, we concluded that the abundance of the Prevotella genera is a key factor indicating a low metabolic potential. These metagenome-based metabolic signatures were used to study the interaction networks between bacteria-specific metabolites and human proteins. We found that thirty-three such metabolites interact with disease-relevant protein complexes several of which are highly expressed in cells and tissues involved in the signaling and shaping of the adaptive immune system and associated with squamous cell carcinoma and bladder cancer. From this set of metabolites, eighteen are present in DrugBank providing evidence that we carry a natural pharmacy in our guts. Furthermore, we established connections between the systemic effects of non-antibiotic drugs and the gut microbiome of relevance to drug side effects and health-care solutions.link_to_subscribed_fulltex

    Fitness of Escherichia coli during Urinary Tract Infection Requires Gluconeogenesis and the TCA Cycle

    Get PDF
    Microbial pathogenesis studies traditionally encompass dissection of virulence properties such as the bacterium's ability to elaborate toxins, adhere to and invade host cells, cause tissue damage, or otherwise disrupt normal host immune and cellular functions. In contrast, bacterial metabolism during infection has only been recently appreciated to contribute to persistence as much as their virulence properties. In this study, we used comparative proteomics to investigate the expression of uropathogenic Escherichia coli (UPEC) cytoplasmic proteins during growth in the urinary tract environment and systematic disruption of central metabolic pathways to better understand bacterial metabolism during infection. Using two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) and tandem mass spectrometry, it was found that UPEC differentially expresses 84 cytoplasmic proteins between growth in LB medium and growth in human urine (P<0.005). Proteins induced during growth in urine included those involved in the import of short peptides and enzymes required for the transport and catabolism of sialic acid, gluconate, and the pentose sugars xylose and arabinose. Proteins required for the biosynthesis of arginine and serine along with the enzyme agmatinase that is used to produce the polyamine putrescine were also up-regulated in urine. To complement these data, we constructed mutants in these genes and created mutants defective in each central metabolic pathway and tested the relative fitness of these UPEC mutants in vivo in an infection model. Import of peptides, gluconeogenesis, and the tricarboxylic acid cycle are required for E. coli fitness during urinary tract infection while glycolysis, both the non-oxidative and oxidative branches of the pentose phosphate pathway, and the Entner-Doudoroff pathway were dispensable in vivo. These findings suggest that peptides and amino acids are the primary carbon source for E. coli during infection of the urinary tract. Because anaplerosis, or using central pathways to replenish metabolic intermediates, is required for UPEC fitness in vivo, we propose that central metabolic pathways of bacteria could be considered critical components of virulence for pathogenic microbes

    NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth

    Get PDF
    Inflammatory bowel diseases involve the dynamic interplay of host genetics, microbiome and inflammatory response. Here, we report that NLRP12, a negative regulator of innate immunity, is reduced in human ulcerative colitis by comparing monozygotic twins and other patient cohorts. In parallel, Nlrp12-deficiency in mice caused increased colonic basal inflammation, leading to a less-diverse microbiome, loss of protective gut commensal strains (Lachnospiraceae) and increased colitogenic strains (Erysipelotrichaceae). Dysbiosis and colitis susceptibility associated with Nlrp12-deficency were reversed equally by treatment with antibodies targeting inflammatory cytokines or by administration of beneficial commensal Lachnospiraceae isolates. Fecal transplants from specific pathogen free reared mice into germ-free Nlrp12-deficient mice showed that NLRP12 and the microbiome each contribute to immune signaling that culminates in colon inflammation. These findings reveal a feed-forward loop where NLRP12 promotes specific commensals that can reverse gut inflammation, while cytokine blockade during NLRP12-deficiency can reverse dysbiosis
    • …
    corecore