749 research outputs found

    Thermodynamic relations in a driven lattice gas: numerical exprements

    Full text link
    We explore thermodynamic relations in non-equilibrium steady states with numerical experiments on a driven lattice gas. After operationally defining the pressure and chemical potential in the driven lattice gas, we confirm numerically the validity of the integrability condition (the Maxwell relation) for the two quantities whose values differ from those for an equilibrium system. This implies that a free energy function can be constructed for the non-equilibrium steady state that we consider. We also investigate a fluctuation relation associated with this free energy function. Our result suggests that the compressibility can be expressed in terms of density fluctuations even in non-equilibrium steady states.Comment: 4 pages, 4 figure

    A Comparison of Exergaming Interfaces for Use in Rehabilitation Programs and Research

    Get PDF
    Exergames or active video games are video games with interfaces that require active involvement and the exertion of physical force by participants. These exergames are designed to track body motion and provide both fun and exercise for game players. Numerous video game console companies have designed exergaming interfaces that are becoming very popular. This paper examines the nature of the interfaces and explores the possibility of using these interfaces for rehabilitation programs and research. While many systems exist, this paper will focus on three major players: Sony PlayStation Move, Nintendo Wii, and Microsoft Xbox 360 Kinect. Comparisons include the technical specifications, the motion sensed by each interface, and the motion required in each therapeutic activity type. Discussion addresses the research implications of using these tools

    Thermodynamics with long-range interactions: from Ising models to black-holes

    Get PDF
    New methods are presented which enables one to analyze the thermodynamics of systems with long-range interactions. Generically, such systems have entropies which are non-extensive, (do not scale with the size of the system). We show how to calculate the degree of non-extensivity for such a system. We find that a system interacting with a heat reservoir is in a probability distribution of canonical ensembles. The system still possesses a parameter akin to a global temperature, which is constant throughout the substance. There is also a useful quantity which acts like a {\it local temperatures} and it varies throughout the substance. These quantities are closely related to counterparts found in general relativity. A lattice model with long-range spin-spin coupling is studied. This is compared with systems such as those encountered in general relativity, and gravitating systems with Newtonian-type interactions. A long-range lattice model is presented which can be seen as a black-hole analog. One finds that the analog's temperature and entropy have many properties which are found in black-holes. Finally, the entropy scaling behavior of a gravitating perfect fluid of constant density is calculated. For weak interactions, the entropy scales like the volume of the system. As the interactions become stronger, the entropy becomes higher near the surface of the system, and becomes more area-scaling.Comment: Corrects some typos found in published version. Title changed 22 pages, 2 figure

    Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics

    Full text link
    We continue our study of the linear response of a nonequilibrium system. This Part II concentrates on models of open and driven inertial dynamics but the structure and the interpretation of the result remain unchanged: the response can be expressed as a sum of two temporal correlations in the unperturbed system, one entropic, the other frenetic. The decomposition arises from the (anti)symmetry under time-reversal on the level of the nonequilibrium action. The response formula involves a statistical averaging over explicitly known observables but, in contrast with the equilibrium situation, they depend on the model dynamics in terms of an excess in dynamical activity. As an example, the Einstein relation between mobility and diffusion constant is modified by a correlation term between the position and the momentum of the particle

    Galaxy rotation curves: the effect of j x B force

    Full text link
    Using the Galaxy as an example, we study the effect of j x B force on the rotational curves of gas and plasma in galaxies. Acceptable model for the galactic magnetic field and plausible physical parameters are used to fit the flat rotational curve for gas and plasma based on the observed baryonic (visible) matter distribution and j x B force term in the static MHD equation of motion. We also study the effects of varied strength of the magnetic field, its pitch angle and length scale on the rotational curves. We show that j x B force does not play an important role on the plasma dynamics in the intermediate range of distances 6-12 kpc from the centre, whilst the effect is sizable for larger r (r > 15 kpc), where it is the most crucial.Comment: Accepted for publication in Astrophysics & Space Science (final printed version, typos in proofs corrected

    Triggering Threshold Spacecraft Charging with Changes in Electron Emission from Materials

    Get PDF
    Modest changes in spacecraft charging conditions can lead to abrupt changes in the spacecraft equilibrium, from small positive potentials to large negative potentials relative to the space plasma; this phenomenon is referred to as threshold charging. It is well known that temporal changes of the space plasma environment (electron plasma temperature or density) can cause threshold charging. Threshold charging can also result from by temporal changes in the juxtaposition of the spacecraft to the environment, including spacecraft orbit, orientation, and geometry. This study focuses on the effects of possible changes in electron emission properties of representative spacecraft materials. It is found that for electron-induced emission, the possible threshold scenarios are very rich, since this type of electron emission can cause either positive or negative charging. Alternately, modification of photon- or ion-induced electron emission is found to induce threshold charging only in certain favorable cases. Changes of emission properties discussed include modifications due to: contamination, degradation and roughening of surfaces and layered materials; biasing and charge accumulation; bandstructure occupation and density of states caused by heat, optical or particle radiation; optical reflectivity and absorptivity; and inaccuracies and errors in measurements and parameterization of materials properties. An established method is used here to quantitatively gauge the relative extent to which these various changes in electron emission alter a spacecraft’s charging behavior and possibly lead to threshold charging. The absolute charging behavior of a hypothetical flat, two-dimensional satellite panel of a single material (either polycrystalline conductor Au or the polymeric polyimide Kapton™ H) is modeled as it undergoes modification and concomitant changes in spacecraft charging in three representative geosynchronous orbit environments, from full sunlight to full shade (eclipse) are considered

    Can the Pioneer anomaly be of gravitational origin? A phenomenological answer

    Full text link
    In order to satisfy the equivalence principle, any non-conventional mechanism proposed to gravitationally explain the Pioneer anomaly, in the form in which it is presently known from the so-far analyzed Pioneer 10/11 data, cannot leave out of consideration its impact on the motion of the planets of the Solar System as well, especially those orbiting in the regions in which the anomalous behavior of the Pioneer probes manifested itself. In this paper we, first, discuss the residuals of the right ascension \alpha and declination \delta of Uranus, Neptune and Pluto obtained by processing various data sets with different, well established dynamical theories (JPL DE, IAA EPM, VSOP). Second, we use the latest determinations of the perihelion secular advances of some planets in order to put on the test two gravitational mechanisms recently proposed to accommodate the Pioneer anomaly based on two models of modified gravity. Finally, we adopt the ranging data to Voyager 2 when it encountered Uranus and Neptune to perform a further, independent test of the hypothesis that a Pioneer-like acceleration can also affect the motion of the outer planets of the Solar System. The obtained answers are negative.Comment: Latex2e, 26 pages, 6 tables, 2 figure, 47 references. It is the merging of gr-qc/0608127, gr-qc/0608068, gr-qc/0608101 and gr-qc/0611081. Final version to appear in Foundations of Physic

    Electroweak Symmetry Breaking via UV Insensitive Anomaly Mediation

    Full text link
    Anomaly mediation solves the supersymmetric flavor and CP problems. This is because the superconformal anomaly dictates that supersymmetry breaking is transmitted through nearly flavor-blind infrared physics that is highly predictive and UV insensitive. Slepton mass squareds, however, are predicted to be negative. This can be solved by adding D-terms for U(1)_Y and U(1)_{B-L} while retaining the UV insensitivity. In this paper we consider electroweak symmetry breaking via UV insensitive anomaly mediation in several models. For the MSSM we find a stable vacuum when tanbeta < 1, but in this region the top Yukawa coupling blows up only slightly above the supersymmetry breaking scale. For the NMSSM, we find a stable electroweak breaking vacuum but with a chargino that is too light. Replacing the cubic singlet term in the NMSSM superpotential with a term linear in the singlet we find a stable vacuum and viable spectrum. Most of the parameter region with correct vacua requires a large superpotential coupling, precisely what is expected in the ``Fat Higgs'' model in which the superpotential is generated dynamically. We have therefore found the first viable UV complete, UV insensitive supersymmetry breaking model that solves the flavor and CP problems automatically: the Fat Higgs model with UV insensitive anomaly mediation. Moreover, the cosmological gravitino problem is naturally solved, opening up the possibility of realistic thermal leptogenesis.Comment: 27 pages, 3 figures, 1 tabl

    Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter's great red spot

    Full text link
    We introduce a new set of generalized Fokker-Planck equations that conserve energy and mass and increase a generalized entropy until a maximum entropy state is reached. The concept of generalized entropies is rigorously justified for continuous Hamiltonian systems undergoing violent relaxation. Tsallis entropies are just a special case of this generalized thermodynamics. Application of these results to stellar dynamics, vortex dynamics and Jupiter's great red spot are proposed. Our prime result is a novel relaxation equation that should offer an easily implementable parametrization of geophysical turbulence. This relaxation equation depends on a single key parameter related to the skewness of the fine-grained vorticity distribution. Usual parametrizations (including a single turbulent viscosity) correspond to the infinite temperature limit of our model. They forget a fundamental systematic drift that acts against diffusion as in Brownian theory. Our generalized Fokker-Planck equations may have applications in other fields of physics such as chemotaxis for bacterial populations. We propose the idea of a classification of generalized entropies in classes of equivalence and provide an aesthetic connexion between topics (vortices, stars, bacteries,...) which were previously disconnected.Comment: Submitted to Phys. Rev.
    • …
    corecore