5 research outputs found

    Algorithmic issues in queueing systems and combinatorial counting problems

    Get PDF
    Includes bibliographical references (leaves 111-118).Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2008.(cont.) However, these randomized algorithms can never provide proven upper or lower bounds on the number of objects they are counting, but can only give probabilistic estimates. We propose a set of deterministic algorithms for counting such objects for three classes of counting problems. They are interesting both because they give an alternative approach to solving these problems, and because unlike MCMC algorithms, they provide provable bounds on the number of objects. The algorithms we propose are for special cases of counting the number of matchings, colorings, or perfect matchings (permanent), of a graph.Multiclass queueing networks are used to model manufacturing, computer, supply chain, and other systems. Questions of performance and stability arise in these systems. There is a body of research on determining stability of a given queueing system, which contains algorithms for determining stability of queueing networks in some special cases, such as the case where there are only two stations. Yet previous attempts to find a general characterization of stability of queueing networks have not been successful.In the first part of the thesis, we contribute to the understanding of why such a general characterization could not be found. We prove that even under a relatively simple class of static buffer priority scheduling policies, stability of deterministic multiclass queueing network is, in general, an undecidable problem. Thus, there does not exist an algorithm for determining stability of queueing networks, even under those relatively simple assumptions. This explains why such an algorithm, despite significant efforts, has not been found to date. In the second part of the thesis, we address the problem of finding algorithms for approximately solving combinatorial graph counting problems. Counting problems are a wide and well studied class of algorithmic problems, that deal with counting certain objects, such as the number of independent sets, or matchings, or colorings, in a graph. The problems we address are known to be #P-hard, which implies that, unless P = #P, they can not be solved exactly in polynomial time. It is known that randomized approximation algorithms based on Monte Carlo Markov Chains (MCMC) solve these problems approximately, in polynomial time.by Dmitriy A. Katz-Rogozhnikov.Ph.D

    A Natural Language Processing System for Extracting Evidence of Drug Repurposing from Scientific Publications

    No full text
    More than 200 generic drugs approved by the U.S. Food and Drug Administration for non-cancer indications have shown promise for treating cancer. Due to their long history of safe patient use, low cost, and widespread availability, repurposing of these drugs represents a major opportunity to rapidly improve outcomes for cancer patients and reduce healthcare costs. In many cases, there is already evidence of efficacy for cancer, but trying to manually extract such evidence from the scientific literature is intractable. In this emerging applications paper, we introduce a system to automate non-cancer generic drug evidence extraction from PubMed abstracts. Our primary contribution is to define the natural language processing pipeline required to obtain such evidence, comprising the following modules: querying, filtering, cancer type entity extraction, therapeutic association classification, and study type classification. Using the subject matter expertise on our team, we create our own datasets for these specialized domain-specific tasks. We obtain promising performance in each of the modules by utilizing modern language processing techniques and plan to treat them as baseline approaches for future improvement of individual components

    Exploring the Efficacy of Generic Drugs in Treating Cancer

    No full text
    Thousands of scientific publications discuss evidence on the efficacy of non-cancer generic drugs being tested for cancer. However, trying to manually identify and extract such evidence is intractable at scale. We introduce a natural language processing pipeline to automate the identification of relevant studies and facilitate the extraction of therapeutic associations between generic drugs and cancers from PubMed abstracts. We annotate datasets of drug-cancer evidence and use them to train models to identify and characterize such evidence at scale. To make this evidence readily consumable, we incorporate the results of the models in a web application that allows users to browse documents and their extracted evidence. Users can provide feedback on the quality of the evidence extracted by our models. This feedback is used to improve our datasets and the corresponding models in a continuous integration system. We describe the natural language processing pipeline in our application and the steps required to deploy services based on the machine learning models
    corecore