
Algorithmic issues in queueing systems and
MASSACHUSETTS INSTiUTE

combinatorial counting problemi OF TECHNOLOGY

by OCT 14 2008

Dmitriy A. Katz-Rogozhnikov LIBRARIES

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

Author ...

Sloan School of Management
August 15, 2008

Certified by
David Gamarnik

Associate Professor
Thesis Supervisor

Certified byC ertified by ...
Dimitris Bertsimas

Boeing Professor of Operations Research
Thesis Supervisor

Accepted by Brnh rt

Cynthia Barnhart
Co-director, Operations Research Center

ARCHIVES

Algorithmic issues in queueing systems and combinatorial

counting problems

by

Dmitriy A. Katz-Rogozhnikov

Submitted to the Sloan School of Management
on August 15, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

Multiclass queueing networks are used to model manufacturing, computer, supply chain, and
other systems. Questions of performance and stability arise in these systems. There is a body
of research on determining stability of a given queueing system, which contains algorithms
for determining stability of queueing networks in some special cases, such as the case where
there are only two stations. Yet previous attempts to find a general characterization of
stability of queueing networks have not been successful.

In the first part of the thesis, we contribute to the understanding of why such a general
characterization could not be found. We prove that even under a relatively simple class
of static buffer priority scheduling policies, stability of deterministic multiclass queueing
network is, in general, an undecidable problem. Thus, there does not exist an algorithm for
determining stability of queueing networks, even under those relatively simple assumptions.
This explains why such an algorithm, despite significant efforts, has not been found to date.

In the second part of the thesis, we address the problem of finding algorithms for ap-
proximately solving combinatorial graph counting problems. Counting problems are a wide
and well studied class of algorithmic problems, that deal with counting certain objects, such
as the number of independent sets, or matchings, or colorings, in a graph. The problems
we address are known to be #P-hard, which implies that, unless P = #P, they can not
be solved exactly in polynomial time. It is known that randomized approximation algo-
rithms based on Monte Carlo Markov Chains (MCMC) solve these problems approximately,
in polynomial time. However, these randomized algorithms can never provide proven upper
or lower bounds on the number of objects they are counting, but can only give probabilistic
estimates.

We propose a set of deterministic algorithms for counting such objects for three classes of
counting problems. They are interesting both because they give an alternative approach to
solving these problems, and because unlike MCMC algorithms, they provide provable bounds
on the number of objects. The algorithms we propose are for special cases of counting the
number of matchings, colorings, or perfect matchings (permanent), of a graph.

Thesis Supervisor: David Gamarnik
Title: Associate Professor

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research

Acknowledgments

First and foremost I am indebted to my advisors, Dimitris Bertsimas and David Gamarnik,

for their help and support in conducting this research, and throughout my graduate studies

at MIT.

I would like to thank professor Glen Urban for the opportunity to conduct interesting and

intellectually stimulating research with him as well as for his support during a difficult period

in my MIT graduate studies, and professor Jim Orlin for his extremely valuable advice.

I would like to professor Devavrat Shah for his help in conducting this research, and for

agreeing to be on my thesis committee.

I would like to thank Paulette Mosley for helping me navigate the administrative side

of MIT graduate studies, and for her patience at times when I was less than responsive to

concerns not directly related to research.

I would also like to thank all of the ORC community - students, faculty, and the ad-

ministrative staff, for the excellent environment I enjoyed during my graduate studies at

MIT.

Contents

1 Introduction 15

1.1 Multiclass Queueing Networks 15

1.1.1 Thesis contribution to the problem of deciding stability of multiclass

queueing networks 18

1.2 Counting problems and complexity classes 19

1.2.1 NP complexity class 19

1.2.2 #P complexity class 21

1.2.3 RP complexity class 22

1.2.4 Approximation algorithms 23

1.3 Prior work on algorithms for solving counting problems 24

1.3.1 Solving counting problems by computing marginal distribution 24

1.3.2 Prior work on counting colorings and list colorings of a graph 25

1.3.3 Prior work on counting matchings 26

1.3.4 Prior work on computing the permanent of a matrix 26

1.4 Thesis contribution to solving counting problems 27

1.4.1 Contribution to counting colorings of a graph 29

1.4.2 Markov Random Fields 30

1.4.3 Contribution to counting matchings in a graph 30

1.4.4 Contribution to computing the permanent of a matrix 31

2 On deciding stability of multiclass queueing networks under buffer priority

scheduling policies

2.1 Model description and the main result

2.1.1 Deterministic multiclass queueing networks and static buffer priority

scheduling policy

2.1.2 The main result

2.2 Counter Machine, Halting Problem and undecidability

2.2.1 Counter Machine and the Halting Problem

2.2.2 Simplified Counter Machine (SCM), stability and decidability

2.3 Description of the queueing network corresponding to a SCM

2.3.1 The description of the subnetwork SNi, i = 1, 2

2.3.2 The description of the main network MN

2.4 Proof of Theorem 1

2.4.1 Proof of the induction step of Theorem 4

2.5 Conclusion

3 Counting list colorings of a graph

3.1 Definitions and the main result

3.2 Preliminary technical results

3.2.1 Basic recursion

3.2.2 Upper and lower bounds

3.3 Algorithm and complexity

3.3.1 Description of an algorithm

3.3.2 Some properties

3.3.3 Complexity

3.4 Correlation decay

3.5 Comparison of the correlation decay on a computation

correlation decay property

3.6 Conclusions

59

. 59

.. 61

.. . . . 61

.. 63

.. . . . 66

.. . . . 66

.. . . . 67

.. . . . 68

.. . . . 69

tree and the spatial

33

33

33

36

36

37

38

39

39

43

45

46

58

4 Markov random field and partition function

4.1 Model and the preliminary results

4.1.1 Basic recursion and the algorithm . . .

4.1.2 Complexity

4.1.3 Correlation decay analysis

4.1.4 Example: Potts model

4.2 Conclusions

5 Counting matchings in a graph

5.1 Definitions, preliminaries and the main result

5.2 Basic recursion and correlation decay analysis

5.3 Algorithm

5.4 Conclusions

6 Computing the Permanent of a matrix

6.1 Preliminaries and the main result

6.2 Constant degree expanders

6.3 General graphs

6.4 Conclusions

77

. 77

... 8 0

............... .. 83

. 84

.. 89

. 90

91

... 9 1

. 93

.... .. . 97

. 98

101

. 101

. 104

. 107

. 110

List of Figures

2-1 Subnetwork SNi

2-2 Main network MN . .

2-3 Workload Wi(s). Case 1

2-4 Workload Wi(s). Case 2

2-5 Workload Wi(s). Case 3

.•o

. .•

.o .•

..

List of Tables

2.1 Servers and classes in S Ni 40

2.2 Arrival processes into SNi 41

2.3 Servers and classes in MN 44

2.4 Arrival processes into MN 44

Chapter 1

Introduction

1.1 Multiclass Queueing Networks

Queueing network is a ubiquitous tool for modeling a large variety of real life processes

such as communication and data networks, manufacturing processes, call centers and service

networks, and many other real life systems. It is an important task to design and operate

queueing networks so that the performance is acceptable. One of the key qualitative per-

formance measures is stability. Roughly speaking, a queueing network is stable if the total

expected number of jobs in the network is bounded as a function of time. In probabilistic

framework, which is typically used to formalize the stability question, it means that the

underlying queue length process is positive (Harris) recurrent [CY01], [MT93],[Dai95]. We

do not provide a formal definition of this notion here as in this thesis we consider exclusively

deterministic queueing networks, for which stability simply means that the total number of

jobs in the network remains bounded as a function of time. The formalities of the model

and stability notions are delayed until Chapter 2.

The research on stability questions started with the works of Kumar and Seidman [KS90],

Lu and Kumar [LK91], and Rybko and Stolyar [RS92], who identified for the first time queue-

ing networks and work-conserving scheduling policies leading to instability, even though

every processing unit was nominally underloaded (the condition p, < 1 was satisfied by

every server a). This initiated the search for tight stability conditions. Important ad-

vances were obtained in this direction, most notably the development of the fluid model

methodology which significantly simplifies the stability issue by reducing the underlying

stochastic problem to a simpler deterministic continuous time continuous state problem

[Dai95],[Sto95]. It was established that stability of the fluid model implies stability of the

underlying stochastic network [Dai95],[Sto95], and partially the converse result holds as well

[Mey95], [Dai96], [PROO], [GH05], although not always [Bra99], [DHV99]. Yet, even character-

izing stability of fluid models turned out to be non-trivial [DM97],[DW96],[BGT96],[DV00]

and no full characterization is available either. Meanwhile it was discovered that certain

classes of networks and scheduling policies are universally stable. For example, networks with

feedforward (acyclic) structure were proven to be stable under an arbitrary work-conserving

scheduling policy [DM95], [Dai95], [CY01]. A First-Buffer-First-Serve, Last-Buffer-First-Serve

static buffer priority type scheduling policies were shown to stabilize an arbitrary queueing

network satisfying a certain topological restriction (so-called reentrant line) [KK01],[DW96].

A certain simple scheduling policy based on due dates was shown to stabilize an arbitrary

network [Bra01]. At the same time some simple static buffer priority policies are not neces-

sarily stable, as was shown in the original works on instability [KS90], [LK91], [RS92]. Also

First-In-First-Out (FIFO) policy can lead to instability [Sei94],[Bra94].

While most of the aforementioned research activity was conducted by the operations re-

search, electrical engineering and mathematics communities, in parallel and independently

the stability problem was investigated by the theoretical computer science community us-

ing the Adversarial Queueing Network (AQN) model. The motivation there coming from

data networks, the model is somewhat different: no probabilistic assumptions are made

on either the arrival or service processes. Instead an adversary is assumed to inject jobs

(communication packets) into the network which is represented as a graph. The links of

the graph serve the roles of processing units and the processing times are typically as-

sumed to be equal to one unit of time deterministically. In this setting the model is defined

to be stable if for every pattern of packet injections, subject to certain load conditions,

the total number of packets remains bounded as a function of time. The AQN was in-

troduced by Borodin et al. [BKR+01] and further researched by many authors [AAF+96],

[And00],[AZ00], [AKOR98],[GamO], [Gam03], [Goe99], [LPSR02],[Ros02], [Tsa97]. Many re-

sults similar to the stochastic networks counterpart were established. It was shown that

while AQN corresponding to an acyclic graph is always stable [BKR+01], there are AQN

and scheduling policies (usually called protocols) which are work-conserving (usually called

greedy) and which lead to instability [AAF+96],[Goe99]. It was also established that FIFO

can lead to instability [AAF+96], even with arbitrary small injection rates [BG03]. The

relevance of fluid models to AQN was established in [Gam00]: stability of the fluid model

implies stability of AQN. Partially a converse result holds as was shown also in [Gam00].

Yet, despite an impressive progress in the area and interesting parallel development to the

stochastic counterpart, tight characterization of stable AQN is still not known.

Stability theory comes in various flavors. Recently a lot of attention was devoted to stabil-

ity of certain utility maximization and max/min type scheduling policies in stochastic models

of internet congestion control [RMOO], [dVLK01], [BM01], [LS04], [Sri04], [Bra05], [GW06], [CST].

In such model arriving jobs are flows which simultaneously occupy several processing servers.

We do not discuss this type of stability questions in this thesis.

In this thesis we frame the problem of characterizing stable queueing networks as an algo-

rithmic decision problem: given a queueing network and an appropriately defined scheduling

policy determine whether the network is stable. In order to introduce the problem for-

mally we consider the simplest possible setting - the interarrival times and service times

are assumed to take deterministic rational values. We focus exclusively on a simple class

of scheduling policies, namely non-preemptive static buffer priority scheduling policies. We

assume that buffers have finite or infinite capacity. Jobs which upon arrival see a full (finite)

buffer are dropped from the network. We note that the assumption of finite buffers is the

only departure from models studied in the context of stability of queueing networks problem.

The details of the model are given in Section 2.1.

1.1.1 Thesis contribution to the problem of deciding stability of

multiclass queueing networks

Our main result is that stability of queueing networks operating under the class of the so

called static buffer priority scheduling policies is an undecidable property. Thus no construc-

tive means of characterizing stable queueing networks for this broad class of policies is pos-

sible. This resolves the open problem of providing tight characterization of stable queueing

networks for this class of policies. Our work builds partially on an earlier work [Gam02] were

undecidability result was established for the class of so-called generalized priority scheduling

policy. There are important difference between the current work and [Gam02]. The class of

generalized priority policies was not considered in the literature prior to [Gam02] . Addition-

ally, generalized priority policies allow idling, whereas most of the work on stability analysis

focuses on work-conserving scheduling policy. Also [Gam02] considered single-server setting,

whereas here we consider the network setting. We note that for the class of buffer priority

policies (as well as any other work-conserving scheduling policy) the question of stability of a

single server model is decidable: one needs to compute the load factor p. Then the system is

stable if and only if p < 1 (p < 1 if all of the interarrival and service times are deterministic).

The concept of undecidability was introduced in the classical works of Alan Turing in

1930's and it is one of the principal tools for establishing limitations of certain computational

problems. The first problems which were established to be undecidable included Turing Halt-

ing Problem, Post Correspondence Problem and several related problems [Sip97]. Typically

one establishes undecidability of a given problem by taking a problem which is already known

to be undecidable, and establishing a reduction from this problem to the given problem of

interest. This method is well known in the computer science literature as the reduction

method. Lately several problems were proven to be undecidable in the area of control the-

ory [BBK+01],[BT00b], [BT00a]. In particular the work of Blondel at al. [BBK+01] used a

device known as Counter Machine or Counter Automata as a reduction tool. In this thesis

as in [BBK+01] as well as in [Gam02], our proof technique is also based on a reduction to

a Counter Machine model, though the construction details are substantially different from

[Gam02]. We use a well-known Rybko-Stolyar network [RS92] as a gadget and construct an

elaborate queueing network which is able to emulate the dynamics of an arbitrary Counter

Machine. The undecidability result is then a simple consequence of undecidability of the

Halting Problem for Counter Machine, which is a classical result [HU69].

1.2 Counting problems and complexity classes

In this section, we give an overview of the #P complexity class and related complexity

classes, since the counting problems we discuss belong to this complexity class.

#P complexity class for counting problem is analagous to the NP complexity class for

decision problems, so we will start by briefly describing NP complexity class. For more

information on the NP complexity class, and complexity and computability theory in general,

we recommend Sipser's book, [Sip97].

1.2.1 NP complexity class

Perhaps the most used characterization of an algorithm in terms of performance in theoretical

computer science is whether its running time is bounded by a polynomial in the size of the

input. If so, the algorithm is said to be polynomial time and belongs to the complexity class

P. Thus, complexity class P is classically defined to be a class of yes/no problems for which

there exists an algorithm which runs in time bounded by a polynomial in the size of the input.

Formally, the definition of P is given in terms of the running time of a Turing machine, but

it is equivalent for any reasonable computational model (for more formal definitions, see

[Sip97]). This characterization is so prevalent, that in some literature such algorithms are

simply referred to as "fast" or "efficient". While there are a lot of problems which are proven

to be in P, often called "easy" problems, it is usually impossible to prove that a problem

which is considered to be hard is not in P. A few problems are known to be undecidable,

such as the Turing Halting Problem, or, as we discussed in Section 1.1, the problem of

determining stability of a queueing network operating under a static buffer priority policy,

and thus are trivially not in P. A few other problems can be directly shown to be outside

of P. But for most of the problems, perhaps the vast majority of those arising in practice,

such a proof seems out of reach. The NP complexity class, first introduced by Cook (see

[Sip97]), is invaluable in proving that a certain problem is "unlikely" to be in P, considered

by most to be a sufficient proof that a problem is "hard", and that efforts to find polynomial

time algorithm are extremely unlikely to be fruitful. Cook defines NP complexity class as

a class of yes/no problems which can be solved in Polynomial time by a non-deterministic

Turing Machine, or, equivalently, for which there exists a solution that can be verified in

polynomial time. Naturally, all problems in P are in NP, but it is unknown and is one of

the most well known open problems in theoretical computer science whether P and NP are

indeed equivalent. It is considered likely that P does not equal NP, partly because decades

of research, including the time before NP complete class has even been defined, have failed

to produce a polynomial algorithm for an NP-hard problem. Indeed a lot of statements are

made modulo the P - NP assumption.

We say that problem A is NP-hard if, given an oracle (or a polynomial algorithm) for

A, any problem in NP can be solved in polynomial time. Thus, unless P equals NP, an

NP-hard problem can not be solved in polynomial time. A proof that a problem is NP-hard

is considered to be sufficient evidence that a polynomial algorithm for such a problem is

impossible to construct, and is probably by far the most used way of proving that a given

problem is "hard".

If a problem is both in NP, and NP-hard, we say that it is NP-complete. NP-complete

problems are "hardest in NP", and are all polynomially equivalent - if one of them can be

solved in polynomial time, all can be. Examples of NP-complete problems include Travelling

Salesman Problem, determining if a graph contains an independent set of a given size,

determining if a graph has a Hamiltonian path, and many others.

NP complexity class proved invaluable in classifying yes/no decision problems. However

it is not directly applicable to counting problems. Although counting problems can be NP-

hard, only Yes/No decision problems fall under definition of NP-complete or "in NP".

1.2.2 #P complexity class

While NP class proved very useful for characterizing difficulty of NP problems, its definition

does not directly apply to counting problems. In order to deal with counting type problems,

in 1979, Valiant introduced a #P complexity class [Val].

Formally, while NP problem can be phrased as "does a given non-deterministic Turing

Machine have an accepting path", #P problem can be phrased as "how many accepting paths

does a given non-deterministic Turing machine have"? Less formally, #P complexity class is

a class of problems corresponding to counting the number of objects, existence of which can

be verified in polynomial time, such as "How many Hamiltonian cycles does a given graph

have", or "How many independent sets of a given size does a given graph contain"?

In analogy with the NP complexity class, we say that problem A is #P-hard if an oracle

(or a polynomial time algorithm) for problem A enables us to solve any #P-hard problem

in polynomial time. This implies that if a #P-hard problem can be solved in polynomial

time, all #P problems can be. Similarly, #P-complete problems are those that are both in

#P and are #P-hard, or "the hardest problems in #P".

It is not surprising that most problems of the form "count the number of objects, finding

one of which is NP-hard", such as "how many independent sets of a given size does a given

graph have?" are #P-hard. However, surprisingly, some problems of the form "Count the

number of objects which are possible to find in polynomial time", such as the well studied

"Count the number of perfect matching of a given bipartite graph", turn out to be #P-hard

as well. That is, while finding a perfect matching in a given bipartite graph, if one exists,

can be done in polynomial time [Kuh55], determining how many matchings exist is #P-hard

[Val79].

Proving that a given counting problem is #P-hard (or #P-complete) is considered suffi-

cient evidence for it to be extremely unlikely that such a problem can be solved in polynomial

time.

However #P-hard problems do arise in theory and in practice. While exact polynomial-

time algorithm is extremely unlikely to exist, it can still be possible to solve such counting

problems approximately. Thus most of the effort in solving #P-hard problems has been

focused on finding efficient approximation algorithms. Approximation algorithms are further

discussed in Subsection 1.2.4.

1.2.3 RP complexity class

While we do not directly address the randomized polynomial time (RP) complexity class in

the body of this thesis, our works has some bearing on research surrounding RP, so we will

briefly mention it here.

RP is the class of problems solvable in polynomial time by an algorithm that is allowed

to make random choices. If the answer to the problem is "no", the algorithm must correctly

return "no", but if the answer is "yes", a small probability of a mistake is allowed.

More formally, RP is the class of problems for which a probabilistic Turing machine exists

such that:

* The running time is bounded by a polynomial in the size of the input

* If the correct answer is "no", the Turing machine returns "no"

* If the correct answer is "yes", the Turing machine returns "yes" with probability at

least 1/2

Note that 1/2 in the definition can be any fraction less than one, by running the Turing

machine on the same input repeatedly.

In practice, randomization has proven to be useful in designing efficient algorithm. How-

ever, unlike the case with the P vs. NP question, a large number of researchers believe that

RP is indeed equal to P.

The evidence for RP = P includes, among other things, the fact that most randomized

algorithms can be de-randomized - that is, based on the randomized algorithm, a deter-

ministic one for solving the same problem can be constructed. One of the few important

classes algorithms which resisted de-randomization attempts is Monte Carlo Markov Chains

(MCMC). In the present thesis we do not derandomize MCMC. However we do show how to

solve deterministically a large class of problems that previously was only solvable in polyno-

mial time by a randomized MCMC algorithm. Thus we shed some, albeit limited, light on

the fundamental P = RP question.

For more discussion of RP, and related complexity classes, see [Sip97]

1.2.4 Approximation algorithms

As we mentioned in 1.2.2, some problems that seem to be unsolvable precisely can be solvable

approximately. Of particular interest is a class of algorithms which solve such problems to

an arbitrarily high precision.

Definition 1. An algorithm A is defined to be a Fully Polynomial Time Approximation

Scheme (FPTAS) for a computing Z if given an arbitrary 6 > 0 it produces a value Z

satisfying

1 Z
- < - <1+6,

1+6-Z-

in time which is polynomial in the length of input and in 1. An algorithm is defined to be

Polynomial Time Approximation Scheme (PTAS) if the computation time is polynomial in

the length of input, but not necessarily in

In practice, the approximate solution of high enough precision can often be as useful as

an exact one, thus FPTAS and PTAS are of great interest in both theoretical and applied

computer science.

Problems we address in Chapters 3 through 6 belong to the #P-hard complexity class,

making an exact solution by a deterministic or randomized polynomial algorithm unlikely.

Thus previous research and our efforts have been focused on finding approximation algo-

rithms for those problems.

1.3 Prior work on algorithms for solving counting prob-

lems

In this section we will discuss existing methods for solving approximately #P-hard counting

problems. By far the most successful method for solving counting problems to date has been

Monte Carlo Markov Chain (MCMC) algorithms.

1.3.1 Solving counting problems by computing marginal distribu-

tion

Most of the #P-hard counting problem can not be solved by counting the desired object

directly, as their number can be exponential in size of the input. Thus straightforward

counting would not result in a polynomial time algorithm.

Most methods for solving counting problems instead compute marginal distributions,

appropriately defined. As an example, we will use the problem of counting number of

independent sets in a graph.

Consider the following sub-problem:

Problem A: "Given graph G and a vertex v, find the probability that an independent

set chosen uniformly at random in G does not contain v.".

Suppose we have an algorithm, called ProblemASolver, which can solve Problem A.

Then, using it, we can construct the following algorithm for counting independent sets in a

graph.

Algorithm CountIndepSets

INPUT: Graph G.

BEGIN

Set ProbabilityProduct = 1.

While G is not empty

Pick any vertex v in G.

Set ProbabilityProduct = ProbabilityProduct * ProblemASolver(G, v)

Set G = G\v

END

OUTPUT: 1/ProbabilityProduct .

If ProblemASolver gives precise answer, CountIndepSets will output the precise number

of independent sets in a graph. If ProblemASolver gives an approximate answer, so does

CountIndepSets. We will discuss the proof of this fact and the effect of the precision of

ProblemASolver on the precision of CountIndepSets elsewhere. Here we just note that

the precision of CountIndepSets is a function of the precision of ProblemASolver, and the

problem size.

1.3.2 Prior work on counting colorings and list colorings of a graph

The setting for the problem of counting the number of list colorings of a graph is as follows.

Each node of a given graph is associated with a list of colors. An assignment of nodes to

colors is called list coloring if every node is assigned to some color from its list and no two

nodes sharing an edge are assigned to the same color. When all the lists are identical, the

problem reduces to the problem of coloring of a graph. The problem of determining whether

a list coloring exists is NP-hard, but provided that the size of each list is strictly larger than

the degree for each node, a simple greedy algorithm produces a coloring. We are concerned

with the corresponding counting problem - compute the total number of list colorings of

a given graph/list pair. This problem is known to be #P hard even for the restricted

problem of counting the colorings, and the focus is on the approximation algorithms. The

existing approximation schemes are based on the rapidly mixing Markov chain technique,

also known as Glauber dynamics approach. It was established by Jerrum [Jer95] that the

Glauber dynamics corresponding to graphs where the ratio of the number of colors to degree

satisfies q/A > 2, mixes rapidly. This leads to a randomized approximation algorithm for

enumerating the number of colorings. The 2-barrier was first broken by Vigoda [VigOO], who

lowered the ratio requirement to 11/6. Many further significant improvements were obtained

subsequently. The state of the art is summarized in [FV06]. For a while the improvement

over 11/6 ratio came at a cost of lower bound Q(log n) on the maximum degree, where n is

the number of nodes. This requirement was lifted by Dyer et al. [DFHV04].

1.3.3 Prior work on counting matchings

We now discuss the problem of computing the total number of (full and partial) matchings

in a given graph. This problem, along with many other combinatorial counting problems

falls into the class of #P-complete problems. Thanks to Vadhan's work [Vad01l], the problem

of counting matchings even in regular graphs with bounded degree (to be precise, degree at

least five) is also known to be #P-complete. FPRAS based on MCMC was established for

arbitrary graphs [JS97].

1.3.4 Prior work on computing the permanent of a matrix

A permanent of an n by n matrix A = (ai,j) is Perm(A) A -n ,H1 < ai,(i), where a

runs over the elements of the permutation group on the set 1, 2,..., n. When A is a zero-

one matrix, Perm(A) counts the number of perfect matching in the bi-partite graph G

corresponding to the adjacency matrix A. Permanent of a matrix A is naturally related to

the determinant of A (signs in front of products are removed). Yet, while the determinant

of a matrix can be computed in polynomial time, the problem of computing the permanent

belongs to the #P class even when A is a zero-one matrix [Va179]. Thus, modulo a basic

complexity theoretic conjecture, no polynomial time algorithm exists for computing the

permanent of a matrix.

A significant research effort was devoted to constructing approximation algorithms for

computing the permanent of a matrix. The first breakthrough came from Jerrum and Sin-

clair [JS89] who constructed a randomized fully polynomial time approximation scheme

(FPTAS) for 0, 1 matrices satisfying certain "polynomial growth" condition. This condition

relates to the ratio of near-perfect to perfect matchings and requires that this ratio grows at

most polynomially in n. The algorithm is based on constructing a rapidly mixing Markov

chain which runs on perfect and near perfect matchings. Using this algorithm as a black-

box Jerrum and Vazirani [JS89] constructed a randomized approximation algorithm for an

arbitrary zero-one matrix, but with mildly exponential running time exp(O(n½ log 2 n)). A

recent dramatic improvement was obtained by Jerrum, Sinclair and Vigoda [JSV04], who

constructed an FPTAS for an arbitrary matrix with non-negative entries.

Unfortunately, the randomization aspect of the algorithm of [JSV04] is quite crucial.

It is not known how to derandomize their Markov chain based algorithm, and the best

known deterministic approximation algorithm is due to Linial, Samoridnitsky and Wigder-

son [LSWOO], who provide only en multiplicative approximation factor guarantee. Their

algorithm is based on an FPTAS for a related matrix scaling problem and uses van der

Waerden's conjecture, which states that a permanent of every doubly stochastic matrix is

at least n!/n n . The e" approximation factor can be improved to (k/(k - 1))kn for the case

of of matrices with row and column sums bounded by k, using the Gurvits' proof [Gur06] of

Schrijver's bound [Sch98]. Thus approximation of a permanent is one of the famous algorith-

mic problems where the existing gap between the randomized and deterministic algorithms

is so profound.

1.4 Thesis contribution to solving counting problems

Our approach is based on establishing a certain correlation decay property which has been

considered in many settings [SS97], [GMP05],[BW02],[BW04],[Jon02] and has been recently

a subject of interest. In particular, the correlation decay has been established in [GMP05]

for coloring triangle-free graphs under the assumption that a > a* = 1.763..., the unique

solution of ae- = 1. (Some mild additional assumptions were adopted). The principal

motivation for establishing the correlation decay property comes from statistical physics, in

particular the connection with the uniqueness of the associated Gibbs measure (uniform mea-

sure in our setting) on infinite versions of the graph, typically lattices. Recently, however, a

new approach linking correlation decay to counting algorithms was proposed in Bandyopad-

hyay and Gamarnik [BG06] and Weitz [Wei06]. The idea is to use correlation decay property

instead of Markov sampling for computing marginals of the Gibbs (uniform) distribution.

This leads to a deterministic approach since the marginals are computed using a dynamic

programming like scheme (also known as Belief Propagation (BP) algorithm [YFWOO]). This

approach typically needs a locally-tree like structure (large girth) [Sha05] in order to be suc-

cessful. The large girth assumption was explicitly assumed in [BG06], where the problems of

computing the number of independent sets and colorings in some special structured (regular)

graphs was considered. Weitz [Wei06] cleverly by-passes the large girth assumption by using

a certain self-avoiding tree construction thus essentially reducing the original problem to a

problem on a tree with appropriate boundary conditions implied by independent sets. This

idea was used recently by Jung and Shah [JS06] to introduce a version of a BP algorithm

which works on a non-locally-tree like graphs, where appropriate correlation decay can be

established. This approach works for binary type problems (independent sets, matchings,

Ising model) but does not apparently extend to multi-valued problems.

We propose a general deterministic approximate counting algorithm which can be used

for arbitrary multi-valued counting problem. We also by-pass the large girth assumption by

considering a certain computation tree corresponding to the Gibbs (uniform for the case of

colorings) measure. Our principal insight is establishing correlation decay for the computa-

tion tree as opposed to the conventional correlation decay associated with the graph-theoretic

structure of the graph. We provide a discussion explaining why it is crucial to establish the

correlation decay in this way in order to obtain FPTAS. Contrast this with [GMP05] where

correlation decay is established for the coloring problem but in the conventional graph-

theoretic distance sense. Our method is similar to the self-avoiding walk method of Weitz

but somewhat more direct as the step of relating the marginal probability on a graph to the

marginal probability on the tree is by-passed in our computation tree approach. The advan-

tage of establishing correlation decay on a computation tree as opposed to the original graph

has been highlighted also in [TJ02] in the context of BP algorithms and the Dobrushin's

Uniqueness condition. More importantly our approach works for general, not necessarily

two-valued model.

The connection between the correlation decay property and the mixing rates of the

Markov chain corresponding to the counting problems has been investigated recently

[DSVW04],[GMP05],[BKMP01],[MS06]. It is known that if the underlying graph satisfies a

certain sub-exponential growth condition, the spatial correlation decay implies rapid mixing

(see e.g., [DSVW04], [GMP05]). The converse, however, does not hold in general, as shown

by Berger et al. [BKMP01].

Our work, along with [BG06],[BN06],[Wei06],[NT] reinforces this connection, as well as,

broadly speaking, contributes to the exciting and emerging connection between theoretical

computer science, probability theory and statistical physics.

1.4.1 Contribution to counting colorings of a graph

As noted before, all the approximation algorithms known so far for solving the problem of

counting the number of colorings of a (non-tree-like) graph relied on Monte Carlo Markov

Chains, and produce a randomized algorithm. In this thesis we focus on a different approach

to the counting list colorings problem. Our setting is a list coloring problem. We require

that the size of every list is at least aA + 3, where a > a** = 2.8432... - the unique solution
1

to ae-0 = 2, and p is a large constant which depends on a - a**. Our girth restriction is

g 2 4, namely, the graph is triangle-free. We obtain the following results. First, assuming

that the size of each list is at most a constant, we construct a deterministic Fully Polynomial

Time Approximation Scheme (FPTAS) for the problem of computing the total number of list

colorings of a given graph/list pair. Second, for an arbitrary graph/list pair (no assumptions

on the list sizes) we construct an approximation algorithm with complexity 20(0g 2 n). Namely,

our algorithm is super-polynomial but still significantly quicker than exponential time.

Although our regime a > 2.8432... is weaker than q/A > 2, for which the Markov

chain is known to mix rapidly, the important contribution of our method is that it provides

a deterministic algorithm. Presently no deterministic algorithms are known for counting

approximately the number of coloring of a graph.

1.4.2 Markov Random Fields

We extend our approach used to solve the problem of counting the number of colorings

of a graph to Markov random field model and show that under certain conditions, the

computation tree satisfies the correlation decay property and, as a result, one obtains a

deterministic algorithm for computing approximately the associated partition function.

1.4.3 Contribution to counting matchings in a graph

In this thesis we use the correlation decay approach for constructing a fully polynomial deter-

ministic approximation scheme for counting the total number of (partial and full) matchings

of a graph. In fact we solve a more general problem - the one of computing the partition

function corresponding to matchings with a given activity level A. The result is obtained

by establishing the correlation decay property on the computation tree for every A > 0 and

every degree A (contrast with A < 5 condition for counting independent sets [Wei06]). Inter-

estingly, the analysis becomes far easier, when compared to its counterparts for independent

sets and coloring problems. The proof of the correlation decay property is done differently

than in [Wei06] and uses mean value theorem to establish a required contraction. A similar

approach was used in [KK98], but in the present context of counting matchings it is partic-

ularly simple. Using a two-level recursion analysis, we show that the rate of the correlation

decay is e 1 - O(L), where A is the maximum degree of the graph. As a corollary we

construct a deterministic FPTAS for computing the number of matchings in any graph with

A = O(1). For the case of arbitrary graphs (with no restriction on the maximum degree)

we construct a deterministic approximation scheme which runs in time exp(O(~/ilog2 n)),

where n the number of vertices in the graph.

The problem of computing the number of matchings in graphs with large girth was ad-

dressed recently by Bayati and Nair [BN06] in the context of Belief Propagation algorithm

and the validity of the cavity method. The use of tree like recursions, similar to the one

in this thesis, for computing the matching polynomials can also be found in the work of

[God81]. The fact that the Gibbs distribution corresponding to matchings exhibits a spa-

tial correlation decay was already established by Heilmann and Lieb [OE72] by looking at

complex roots of the partition function and later by van den Berg [vdB98] using more prob-

abilistic/combinatorial arguments. We also note that the work of Kahn and Kim [KK98]

is pertinent here. Using Godsil's (self-avoiding) tree construction, they show that in any

A-regular graph, the probability that any fixed vertex is not in a (uniformly chosen) ran-

dom matching is asymptotically 1/v; moreover, as we realized since doing the present

work, their proof establishing this fact (see Claim (2.6) in their paper) also uses a two level

recursion and partial derivatives to show convergence to the above probability estimate.

It should be noted that, while, as we mentioned, an FPRAS for counting matchings is

known to exist thanks to the MCMC method, constructing a deterministic counterpart was

an open problem, prior to this work, and in general constructing non-randomized approxi-

mate counting algorithms is a very challenging task.

1.4.4 Contribution to computing the permanent of a matrix

In this thesis we establish the following two results. First we construct a polynomial time

algorithm which for every e > 0 provides factor (1 + e)" multiplicative approximation for the

permanent of a 0, 1 matrix, when the underlying graph is a constant degree expander. The

definition of the latter is given in the subsequent section. Thus we significantly improve the

e" factor of [LSWOO] for this class of graphs. While our algorithm requires polynomial time, it

is not fully polynomial, as the term 1/e appears in the exponent of the running time. Next we

construct an algorithm providing the same factor (1 + e)n approximation for the permanent

of an arbitrary 0, 1 matrix. The running time of the algorithm is exp(O(n3 log3 n)), namely

the algorithm is mildly exponential. The main technical ingredient of our results is the

reduction of the problem of computing a permanent to the problem of computing a partition

function corresponding to the collection of all partial and full matchings of the graph. In this

thesis we obtain the required bounds on the permanent of a graph in terms of the partition

function of partial matchings of the same graph. Both of our results rely on techniques

developed by Jerrum and Vazirani [JV96] for constructing a mildly exponential randomized

approximation algorithm, specifically we use their expander decomposition procedure. An

important technical difficulty arising in our context is the fact that, while in [JV96] it sufficed

to obtain appropriate bounds on the ratio of near perfect to perfect matchings, here we

need to upper bound the ratio of the number of k-matchings to perfect matchings, for all

k < n - 1. The straightforward application of the bound in [JV96] unfortunately gives

a superexponential bound on this quantity and thus is of no use here. We circumvent this

problem by utilizing a more careful counting argument. The difference between our argument

and the argument of [JV96] will be highlighted in the body of this thesis.

Chapter 2

On deciding stability of multiclass

queueing networks under buffer

priority scheduling policies

This chapter contains our contribution to the problem of deciding the stability of queuing

networks, and is organizes as follows. The model description and the main result are provided

in the following section. A background material on a Counter Machine and undecidability

is given in Section 2.2. Section 2.3 is devoted to constructing a reduction from a Counter

Machine to a queueing network. Section 2.4 is devoted to the proof of the main result. Some

concluding thoughts and questions for further research are given in Section 2.5.

2.1 Model description and the main result

2.1.1 Deterministic multiclass queueing networks and static buffer

priority scheduling policy

A multiclass queueing network is described as a collection of J service nodes al,...,aj and

N job classes 1, 2,..., N. Each node is assumed to be single-server type. Each class i is

associated with a unique finite or infinite capacity buffer B2 which stores jobs corresponding

to this class, and is assigned to a unique server node, denoted by a(i). For simplicity we

sometimes identify classes i with the corresponding buffers Bi. The number of jobs in buffer

Bi at time s is the queue length corresponding to class i and is denoted by Qi(s). The total

queue length Eioj Qi(s) corresponding to the server ao at time t is denoted by Q, (s).

Each class i is associated with an external arrival process Ai(O, s) which denotes the total

number of jobs which arrived externally to the buffer Bi during the time interval [0, s]. The

arrival processes typically considered in the literature are either a random renewal process in

the stochastic queueing networks literature or an adversarial process in the computer science

literature. Throughout this chapter we adopt the following simple assumption: the intervals

between the arrivals of jobs is a deterministic class dependent rational quantity ai and the

initial delay is some rational bi. Thus the external arrivals corresponding to the class i occur

exactly at times nai + b, n = 0, 1,... and Ai(O, s) = [(t - b)/ail. Some classes may not have

an associated external arrival process in which case ai = oo and Ai(O, s) = 0 for all s > 0.

We will also write Ai(s) = 1 if there was an arrival at time s (that is s = ain + bi for some

n E Z+), and Ai(s) = 0 otherwise. Each class i is associated with a deterministic service

time 0 < mi < oo which takes a non-negative rational values. It is possible that some of

the service times are equal to zero. We say that at a given time s server is busy only if at

time s it is working on a job which requires a non-zero service time. Specifically, for every

collection of classes S, the associated workload Ws(s) at time s is the total time required to

serve jobs which are presently in the network and which will eventually arrive into classes in

S.

The routing of jobs in the network after the service completions is controlled as follows.

A zero-one N by N sub-stochastic matrix R is fixed. Namely, the row sums of this matrix

add up to at most unity and the spectral radius of this matrix is strictly less than unity. For

every pair of classes i, I such that Ri,1 = 1, every job which completes service in class i at

some time s is immediately routed to buffer B, after the service completion. If the buffer is

not full Qi(s) < B1, then the job is added to the end of the queue in the buffer. If the buffer

is full Ql(s) = B1, then the job is dropped from the network. If class i is such that Ri,1 = 0

for all 1, then the jobs in class i after the service completion depart from the network.

The selection of jobs for processing is controlled using some scheduling policy 7. In this

thesis we consider exclusively a static buffer priority scheduling policy w which is described as

follows. For each server aj a permutation Oy of the elements of classes belonging to aj is fixed.

At time s = 0 and at every time instance s corresponding to the service completion in aj, the

server aj finds the index i E aj with the smallest value Oj (i) such that Qi(s) > 0, selects the

job in the head of this queue and begins working on it. If ~ij Qi(s) = 0 then the server

idles till the first time that a job appears in one of the classes and starts working on this job.

The vector 0 = (0j), 1 < j < J completely specifies the scheduling policy 7r. In particular,

the scheduling policy is non-preemptive and non-idling. Static buffer priority policy is a

widely studied scheduling policy [BPT94],[BNM99], [DW96],[DM97],[LK91], [KK94],[KM04],

[BGT01],[RS92]

A queueing network, described by servers oj, 1 < j < J, classes i = 1,2,..., N, the

routing matrix R, interarrival times ai, delays bi and service times mi will be denoted by Q

for brevity. The queueing network Q together with the scheduling policy 7r and the vector of

initial queue lengths (Qi(0)), 1 < i < N completely determines the queue length dynamics

of the network, namely the vector process Q(s) = (Qi(s)), s > 0.

Definition 2. A triplet (Q, 7r, Q(0)) is defined to be stable if

lim sup Qi (s)< 0o, (2.1)
s>0 1<i<N

A queueing network Q together with the scheduling policy r is defined to be stable if(Q, 7r, Q(0))

is stable for every Q(O).

In models with probabilistic settings, Q(s) is typically a stochastic process, in which case

the queueing networks is defined to be stable if the process is so-called positive Harris recur-

rent [Dai95], [MT93], [CYO1]. This usually implies the property lim sups>o0 •<i<N E[Qi(s)] <

oo. In our deterministic setting, however, this reduces to the simple condition (2.1). The

principle goal of the stability research is developing algorithms for determining stability of

a given triplet (Q, 7, Q(0)) or a pair (Q, 7r). In many interesting special cases stability of

(Q, 7r) is implied by stability of (Q, 7r, Q(0)) for a given starting state Q(0). For example, in

the stochastic setting, this would be the case provided that the underlying Markov chain is

irreducible. Due to the deterministic nature of our model, though, this implication does not

necessarily hold and it is important to make the distinction. Our results apply only to the

stability of triplets (Q, i7, Q(0)). We certainly expect that the problem of determining stabil-

ity of pairs (Q, 7r) is undecidable and leave it as an open problem. Note that undecidability

of pairs (Q, i7) was established in [Gam02] for the class of generalized priority policies 7r.

2.1.2 The main result

The main result of this chapter is establishing the undecidability (non-computability) of

stability property for the class of buffer priority policies 0. Precisely stated

Theorem 1. No algorithm can exist which on every input (Q, 0, Q(O)) outputs YES if the

triplet (Q, 8, Q(O)) is stable and outputs NO otherwise, where Q is an arbitrary multiclass

queueing network, 0 is an arbitrary non-preemptive buffer priority scheduling policy, and

Q(O) is an arbitrary vector of initial queue lengths. Namely, the underlying problem is

undecidable.

To prove Theorem 1, we introduce in Section 3 a counter Machine and its stability.

Stability of a Counter Machine is a property tightly related to the so-called Halting Property

(see Section 3), which is a classical undecidable property.

2.2 Counter Machine, Halting Problem and undecid-

ability

A Counter Machine (see [BBK+01], [HU69]) is a deterministic computing machine which is

a simplified version of a Turing Machine - a formal description of an algorithm performing

a certain computational task or solving a certain decision problem. In his classical work

on the Halting Problem, Alan Turing showed that certain decision problems simply cannot

have a corresponding solving algorithm, and thus are undecidable. For a definition of a

Turing Machine and the Turing Halting Problem see [Sip97]. Ever since many quite natural

problems in mathematics and computer science were found to be undecidable, Hilbert's tenth

problem [Mat93] being one of the most notable examples. The famous Church-Turing thesis

states that whatever is computable in principle can be computed by a Turing Machine. Thus

undecidable problems, that is problems for which a Turing Machine cannot be built, are truly

problems not allowing constructive solution.

More recently several undecidability results were obtained in the area of control theory,
some of them using the device known as a Counter Machine, see Blondel et al. [BBK+01]. For

a survey of decidability results in control theory area see Blondel and Tsitsiklis [BT00b]. We

use the Counter Machine device as our reduction tool as well, and thus in the next subsection

we provide a detailed description of a Counter Machine and state relevant undecidability

results.

2.2.1 Counter Machine and the Halting Problem

A Counter Machine is described by 2 counters R 1, R 2 and a finite collection of states S. Each

counter Ri contains some nonnegative integer zi in its register. Depending on the current

state s E S and depending on whether the content of the registers is positive or zero, the

Counter Machine is updated as follows: the current state s is updated to a new state s' E S

and one of the counters has its number in the register incremented by one, decremented by

one or no change in the counters occurs.

Formally, a Counter Machine is a pair (S, F). S = {S, S2 ,. . . , Sm is a finite set of states

and r is configuration update function F : Sx {0, 1}2 - Sx {(-1, 0), (0, -1), (0, 0), (1, 0), (0, 1)}.
A configuration of a Counter Machine is an arbitrary triplet (s, Zl, z2) S x Z. A con-

figuration (s, zx, z 2) is updated to a configuration (s', z', z') as follows. Let 1{.} be the

indicator function. Specifically, for every integer z, 1{z} = 1 if z > 0, and = 0 otherwise.

Given the current configuration (s, z 1, z2) suppose, for example F(s, 1{1z}, 1{z 2}) = (s', 1, 0).

Then the current state is changed from s to s', the content of the first counter is incre-

mented by one and the second counter does not change: z' = zx + 1, z2 = z2. We will

also write r : (s, z1l,z 2) -- (s',zl + 1, z2) and F : s -- s', F : zl - zl + 1, r : z2 - z2. If

F(s, 1{zl}, l{z2}) = (s', (-1,0)), then the current state becomes s', z' = z - 1, z = z2 -

Similarly, if F(s, b) = (s', (0, 1)) or F(s, b) = (s', (0, -1)), the new configuration becomes

(s', z1, z2 + 1) or (s', Z1, 2 - 1), respectively. If F(s, b) = (s', (0, 0)) then the state is updated

to s', but the contents of the counters do not change. It is assumed that the configuration

update function r is consistent in the sense that it never attempts to decrement a counter

which is equal to zero. The present definition of a Counter Machine can be extended to the

one which incorporates more than two counters, but such an extension is not necessary for

our purposes.

Given an initial configuration (SO, z °, z) E S x Z' the Counter Machine uniquely deter-

mines subsequent configurations (s1, zl, z), (S2, z2, z),..., (st , z), z').... We fix a certain

configuration (s*, zI, z*) and call it the halting configuration. If this configuration is reached

then the process halts and no additional updates are executed. The following theorem es-

tablishes the undecidability (also called non-computability) of the halting property.

Theorem 2. Given a Counter Machine (S, F), initial configuration (so, zo,z °) and the halt-

ing configuration (s*, z4, z*), the problem of determining whether the halting configuration

is reached in finite time (the Halting Problem) is undecidable. It remains undecidable even

if the initial and the halting configurations are the same with both counters equal to zero:
so = *, o = = 0.

The first part of this theorem is a classical result and can be founded in [Hoo66]. The

restricted case of so = s*, z = zi, i = 1, 2 can be proven similarly by extending the set of

states and the set of transition rules. It is the restricted case of the theorem which will be

used in this thesis.

2.2.2 Simplified Counter Machine (SCM), stability and decidabil-

ity

We say that a Counter Machine is stable if the value of counters is bounded as time goes

to infinity. Namely supt z' < oc, supt z' < oo. It is shown in [GamOO] that determining

whether a Counter Machine which started in a given configuration (si, 0, 0) is stable, is an

undecidable problem, by a simple reduction to the Halting Problem.

Definition 3. A simplified Counter Machine (SCM) is a Counter Machine satisfying the

following condition: there exist two functions a : S x {0, 1}2 - S, 3 : S -_ {-1, 0, 1}2,
such that F(s, z1, Z2) = ((s, ,1{Z 1 > 0},l{z 2 > 0}), ((a(s, 1{z > 0}, 1{z 2 > 0})). In

other words, while the new state s' depends on the entire current configuration (s, zl, z 2), the

incrementing or decrementing of counters at the next step depends only on the new state s'.

It turns out that this restrictive version of a Counter Machine is still sufficiently general

for our purposes:

Proposition 1. Given a Counter Machine, a SCM can be constructed, such that the SCM

is stable if and only if the given Counter Machine is stable.

Proof. We modify the state space {sj}, 1 < j < m to

{ Sdd }l<jm U {(5sven, bi, b2)}l<j<m,bl,b 2E{-1,0,1}. The transition rules are defined as follows

a(sdd, b,b 2) = (S even A, A 2), ifandonlyif (s, b, b2) = (sl, 1A, A 2), and 3(seven, Al, A2))e

(A, A 2). Also (sven, A1, A2) S dd and /(s d d) = (0, 0). It is not hard to observe then

that each transition (sj, zI, z 2) - (si, z1, z2) with bl = z I - zl, b2 = z' - z 2 , is emulated by

two transitions in the SCM: (s'dd, z1,z 2) - ((Sven bi,b2),) -Z / Z SddZ, Z) l

Corollary 1. Determining the stability of SCMs with a given starting configuration s*, z =

0, z2 = 0 is an undecidable problem.

2.3 Description of the queueing network corresponding

to a SCM

Given an SCM with states {l,S2,1 ... ,sm} and counter update rules a,0, we construct a

certain queueing network, buffer priority policy and the vector of queue lengths at time zero.

This network/policy/initial state triplet will have the property that it is stable if and only

if the underlying SCM is stable, thus the reduction goal will be achieved.

We now proceed to the details of the construction. The queueing network consist of

three subnetworks denoted respectively SN1 , SN2 and MN, which stand for Subnetwork 1,

Subnetwork 2, and the Main Network, see Figures 2-1,2-2. The subnetwork SNj, i = 1, 2

will be in charge of the updates of the counter readings zi. The network MN will be in

charge of updating the state si of the SCM. We also describe the buffer priority scheduling

policy implemented in this queueing network. The policy is denoted henceforth by 0. Both

in SNj, i = 1, 2 and in the main network MN the buffer capacities are all 0 or infinite.

The subnetworks SNi, i = 1, 2 are identical in their topological description. They will

only differ in their buffer contents. Hence we only need to describe one of these subnetworks.

On Figures 2-1,2-2 the buffers with infinite capacities are marked by a vertical bar.

2.3.1 The description of the subnetwork SNi, i = 1, 2

The subnetwork SNi consists of five servers, Sij,j = 1,..., 5 and several classes. (see

Figure 2-1). The classes (buffers) corresponding to server Sij are denoted by triplets ijk.

Table 2.1 lists servers, classes (buffers), next classes, corresponding (deterministic) service

Server Classes Next Class Service Time Priority Capacity

Sil ill i21 2 00
i12 .5 1 00
i13 i31 3 0
i14 i31 4 0

Si2 i21 .5 1 00

i22 i12 2 00

i23 i31 3 0

Si3 i31 .04 2 00

i32 1.1 1 00
i33 01i of the network MN 3 0

Si4 i41 .2 1 00
i42 ill 2 0

Si5 i51 ill .02 1 00

Table 2.1: Servers and classes in SNi

times, priorities and the buffer capacities. Service times are shown in column 4 and only

non-zero service times are shown. Thus the non-listed service time entries correspond to zero

service time. For each class we also provide the next class to where the jobs are routed after

the service completion. If the corresponding entry is empty, it means that the job leaves

the network after the service completion. The fifth column corresponds to the priority of

this class within the server. For examples the order of priority of classes in server Sil is

i12, ill, i13, i14, meaning i12 has the highest priority, ill has the next highest priority, etc.

The collection of classes ill, i12, i21, i22 is defined to be "Rybko-Stolyar sub-network", or

RSSNi. It indeed describes the well-known Rybko-Stolyar network [RS92],[CY01].

There are seven external arrival processes into subnetwork SNi, denoted by A'(0, s), j =

1,..., 7. The corresponding information is summarized in Table 2.2. For each arrival process

we describe exact arrival times as well as the class to which the arriving job is routed. For

example the entry i42 corresponding to the arrival process A' indicates that the job arriving

according to the arrival process A' is routed to class i42. The arrival times are represented

in the form an + b for some explicit constants a, b. Here a is the interarrival time and b is

the initial delay. This means that for every non-negative integer n, an arrival occurs at time

an + b.

from MN i
; t.02

A ; t + .02+

Arrival process Classes Arrival times

A' i22 n
A' i42 n +.02
At i13 3n + 1.6
At i23 3n + 2.1
AT i14 3n + 2.6
A' i32 3n + 1.5
At i33 3n + 2.7

Table 2.2: Arrival processes into SNi

jill

'tqL

i5
from MN

)

_I
4-

A i; 3t + 1.6

i12_- .
inf

A'; 3t + 2.6) j
i14

i32
A'; 3t + 1.5

A7; 3t + 2.7 - J-
i33

L" Ji31

---- to MN

Figure 2-1: Subnetwork SNi

41

i22

E - A',;t

i23

E-----A4; 3t + 2.1

Z1

-------- ,

03j

3xx

I lo2j

A3; 3t- .01

A!; 3t

4-3
7 A:; 3t

- 3

Figure 2-2: Main network MN

3k3

2.3.2 The description of the main network MN

The main network consists of 2m + 2 servers, where m is the number of states in the SCM.

The servers are Sol, S02, S3j, S4j, j = 1, 2,..., m. The table describing, servers, classes,

next classes, service times, priorities and buffer capacities is given below as Table 2.3. The

interpretation is the same as for the table for subnetworks SNi. Specific attention is paid to

classes 4j3, 1 < j < m and the next classes described generically as "i41, i51 or exit". The

jobs departing from class 4j3 are routed to

1. class 141 if P(j) = (-1, 0);

2. class 151 if 3(j) = (1, 0);

3. class 241 if 0(j) = (0, -1);

4. class 251 if 0(j) = (0, 1);

5. exit the network if p(j) = (0, 0);

In Table 2.3 some classes within the same server are assigned the same priority level. This

means that the tie is broken arbitrarily. We prefer to assign the same priority level for

simplicity. In reality, as we will see, the server will never have to prioritize between these

classes, as at most one of the corresponding buffers will be non-empty. In order to avoid

cluttering of the figure, the servers 3j are described separately for classes 3k1, 3k2, 3k3, 3k4

and classes 3j5 although these belong to the same group of servers 3j, j = 1,... , m. Arrivals

into the main network are summarized in Table 2.4. There are 3m external arrival processes

into subnetwork MN, denoted by Aj (0, s), i = 3,4, 5, = 1,2, .. , m. We have started the

index i from 3 to avoid confusion with arrival processes A A, in networks SNi, i = 1, 2. The

corresponding information is summarized in the table below. The arrival times are again

represented in the form an + b for some explicit constants a, b.

We now describe the initial state of our queueing network at time s = 0, namely Q(0).

At this time there is one job in class 02j in the main network, where j is such that sj = s*

is the initial state of the SCM. The service is initiated at time s = 0, so the processing of

this job will be over at time 2.71. All other buffers in the queueing network are empty.

Server Classes Next Classes Service Priority Capacity
Time

Sol 011 .09 1 00
012 .18 2 00

all 03j 3jl1 3 00

S02 all 02j 03j 2.71 1 oo
S3j 3kl, for all k s.t. a(sk, 1, 1) = sj 3k2 .09 1 00

3k2, for all k s.t. a(sk, 0, 1) = sj 3k3 .09 1 00oo
3k3, for all k s.t. a(Sk, 1, 0) = sj 3k4 .09 1 00
3k4, for all k s.t. a(sk, 0, 0) = sj .09 1 00

3j5 4jl .02 2 0

S4j 4j1 .02 1 00
4j2 02j 2 0
4j3 i41, i51 or exit 3 0

Table 2.3: Servers and classes in MN

Arrival process Classes Arrival times

A3 3j5 3n - .01
A 4j2 3n
A. 4j3 3n

Table 2.4: Arrival processes into MN

2.4 Proof of Theorem 1

Our main result, Theorem 1 follows immediately from Corollary 1 and theorem below.

Theorem 3. The queueing network constructed in the previous section with the prescribed

initial state Q(O) is stable if and only if the SCM is stable.

For the remainder of this chapter we focus on establishing Theorem 3. We first introduce

the following definitions. Let Wi(s) be the combined workload of the servers Sil, Si2 in

the network SNi at time s. Namely, it is the amount of service required to serve all jobs

in servers Sil, Si2 at time s when the scheduling policy 0 is implemented. Observe that

Wi(s) = Wil2 (s) + Wi21(s) + .5Qi22(s) + .5Q 2l,(s), where Wil 2 (s) and Wi21(s) stand for

the time required to process jobs currently in buffers i12, i21 (if any) respectively. We will

specifically focus on workloads W2 (s-) where s- indicates time immediately preceding s.

Thus if there is an arrival at time s, this arrival is not showing up at s-.

For every integer time instance t = 1, 2, ... , we define the status of the main network

MN to be the following quantity: for every k = 1, 2,..., m, StatusMN(t) = k if at time t - 1

server S02 of the network MN started working on a job in class 02k, and there are no other

jobs anywhere in the network at time t. Otherwise StatusMN(t) = -1.

For each i = 1, 2 we also introduce status of the subnetwork SNi at a given time 3t + 1

for t E Z+ as follows. StatussN (3t + 1) = 2Wi((3t + 1)-) if Qi12 (3t + 1)QQ21(3t + 1) = 0 and

there are no jobs anywhere else in the subnetwork SNi, that is other than the four classes of

RSSN . Otherwise, StatussN, (3t + 1) = -1. We do not define StatussN,(t) at other values

of t. As we will see shortly the status functions at time 3t +1 will represent the configuration

of the SCM at time t. Provided that we have initialized our queueing network appropriately,
the status functions will never take values -1.

Theorem 4. If the configuration of the SCM after t steps is (sq, z1, z2), then StatusMN(3t +

1) = q and StatussN (3t + 1) = zi, i = 1, 2.

Proof. The proof is by induction. For t = 0, the statement of Theorem 4 holds because

the queueing network initialization makes it so. The remainder of this chapter is devoted to
proving the induction step. It is given in Section 5.1. O

We now show how this result implies Theorem 3.

Proof of Theorem 3. The idea of the proof is to show that a bound on the value of counters

of SCM implies a bound on the number of jobs in the queueing network at any one time,
and vice versa.

Suppose SCM is stable. That means that there is a bound M on the maximum value of

counters, so that zl and z2 never exceed M. Let (sj, zi, z 2) be the configuration of the SCM

at time t. Then by Theorem 4, at time (3t + 1)- there are zl < M jobs in SN1, z2 : M
jobs in SN 2, and one job in the main network. So at time (3t + 1)- there can be no more

than 2M + 1 jobs in the queueing network. Since there is only a constant number of arrival

processes in the network and the arrival process is deterministic, then for every time period

[3t + 1, 3(t + 1) + 1) the total number of jobs in the network is bounded by 2M + C for some

constant C which only depends on the network parameters. Thus if SCM is stable, so is the

queueing network.

Conversely, suppose the network is stable and at any time t, the total number of jobs in

the network does not exceed M for some finite value M. Then M is also an upper bound

on StatussN,(3t + 1) for every t. By Theorem 4, this implies that the values zx, z 2 of the

counters of SCM are bounded by M and therefore the SCM is also stable. O

2.4.1 Proof of the induction step of Theorem 4

This subsection proves induction step of Theorem 4. Thus we assume that its statement

holds after t steps, and prove that it holds after t + 1 steps. Assume that the configuration

of the SCM at time t is (sq, z1 , z 2); StatusMN(3t + 1) = q, StatussN,(3t + 1) = zi, i = 1, 2.

Assume that the configuration of SCM at time t + 1 is F(sq, z1, z 2) = (STr YI, Y2). We need

to show that StatusMN(3t + 4) = r, StatussN (3t + 4) = yi, i = 1, 2.

Dynamics in subnetwork SNi

Lemma 1. For every time s > 0 either Qi12(s) = 0 or Qi21(s) = 0. Moreover, Wi(s) = -1,

whenever Wi(s) > 0 and s E R+ is not an instance of arrivals into servers Sil, Si2.

Remark : The first part of the lemma is a well-known fact from the stability literature,
stating that the classes i12, i21 constitute a virtual server such that only one of the two

classes can be served at any given time [DV00],[DHV99].

Proof. Suppose the statement of the lemma does not hold. Then let u = inf(s : Qi12(s) > 0
and Qi21(s) > 0). That means that both buffers i12 and i21 are non-empty at time u+, but

at least one of the two is empty at time u-. Suppose this holds for buffer i12. This implies

that there was an (instantaneous) service completion in buffer i22 at time u. Class i21 has

higher priority than class i22 (consult Table 2.1). This implies that the server S2 was not

working on the job in class i21 at time u-. Since however, class i21 is non-empty at time u+,

then we conclude that there was an arrival into buffer i21 exactly at time u. We conclude

that there was a simultaneous arrival into buffers i12 and i21 at time u and buffers i12 and

i21 were empty at time u-.

Now we show that such a thing is impossible. Since jobs arrive to i12 from i22 and into

i22 from outside at integer times n, we see that u must take integer values. We now obtain

a contradiction. The jobs arrive into ill only from classes i42 and i51. Jobs arriving into

i42 arrive from outside at non-integer times n + .02. Buffer i42 has no capacity and the

processing time for this class is zero. Therefore, these jobs can ultimately arrive into i21

only at times n + .02 and not integer times. Jobs arriving into i51 have a non-zero processing

time .02. These jobs arrive from the main network MN from classes 4j3 which correspond to

zero capacity buffers and zero processing times. Jobs arrive into 4j3 from outside at integer

times 3n. Thus these jobs can ultimately arrive into class i21 only at times 3n + .02 and not

integer times. We conclude that jobs cannot ever arrive into i21 at integer times.

Similarly we consider the case when Qi21(u-) = 0. Since Qi21(u+) > 0 then there was

a service completion in buffer ill at time u. We already showed above that this can only

occur at times of the form n + .02. Also this means Q 12(u-) = 0, since class i12 has higher

priority than class ill. Thus there was an arrival into i12 at time u, namely there was a

service completion in i22 at time u. Since Q 21(u-) = 0 and service time in i22 is zero, there

was arrival into i22 at u. But these arrivals occur only at integer times n. Again we obtain

a contradiction.

To establish the last part regarding Wi (s) observe that only jobs in buffers i12, i21 have

non-zero processing times. Since only one of these buffers can contain a job, the case Wi(s) >

0 corresponds to the case of exactly one of these buffers having jobs, as otherwise, if both

i12, i21 are empty, the remaining jobs in servers Sil, Si2 are processed immediately since they

have zero service time requirement. The assertion then follows. O

3t + 1.02 3t + 2.02 3t + 1.02

3t + 1 3t + 2 3t + 3

Figure 2-3: Workload Wi(s). Case 1

Wi((3t + 1)-)

3t + 4
3- + 0.0 3t a. 21

Arrival from 4r3, MN

3t+ 1 3t+ 2 3t+ 3

Figure 2-4: Workload Wi(s). Case 2

W

W ((3t +

3t +4

Wi(s)

Wi((3t + 1)-)

No arrival from i42

3t + 1

Figure 2-5: Workload W2(s). Case 3

Lemma 2. There are no arrivals into buffers i41, i51 during the time interval [3t + 1, 3t + 3).

Proof. Arrivals into class Ai41 and Ai51 can happen as a result of a departure from one of

the classes 4j3 of the network MN. The buffers 4j3 have zero capacity and zero processing

time. Therefore service completions happen there simultaneously with arrivals from arrival

processes Aý. But those arrivals occur only at times 3t. Thus the first arrival after 3t can

occur only at time 3t + 3. The assertion then follows. O

Lemma 3. During the time interval [3t + 1, 3t + 3), exactly one of servers Sil and Si2 is

busy, and Wi((3t +2)-) 2 Wi((3t+ 1)-). In addition, during this time period, jobs in classes

i12 and i21 finish service only at times which are multiples of .5.

Proof. By Lemma 1, at most one of servers Sil, Si2 does work at any given time. Thus we

need to show that at least one server works during this time period.

By Lemma 2 there are no arrivals into buffers i41, i51 during [3t + 1, 3t + 3). By the

inductive assumption StatussN (3t + 1) = zi > 0, implying in particular that there are no

jobs in buffer i41 at time 3t + 1. Thus buffer i41 is empty during [3t + 1, 3t + 3). This means

that the jobs arriving into class i42 at times 3t + 1.02 and 3t + 2.02 will arrive instantly into

buffer ill. Also one job will arrive into i22 at time 3t+ 1, 3t + 2. By Lemma 1 only one of the

jobs in buffers i12, i21 can be served at a time. Thus the dynamics of the number of jobs in

the subnetwork RSSNi can be viewed as dynamics of a single server queue with service time

.5 and arrivals at times 3t+ 1, 3t+ 1.02, 3t+2, 3t+ 2.02. It is easy then to construct explicitly

Wi(s) during the time period s E [3t +1, 3t +3), given the initial value Wi((3t + 1)-), and the

graph of Wi(s) is depicted on Figures 2-3,2-4,2-5. The part [3t + 1, 3t + 3) is identical in all of

the three figures. The differing parts of the graph corresponding to the interval [3t+ 3, 3t +4)

will be used later on in Subsection 2.4.1. In particular we see that if Wi((3t + 1)-) > 0, then

Wi(s) is always positive during the time interval [3t + 1, 3t + 3), and if W2((3t + 1)-) = 0,
then Wi(s) is equal to zero only at time s = 3t + 2, In particular at least one (and therefore

exactly one) of the servers Sil, Si2 was busy during the time interval [3t + 1, 3t + 3). We also

see by inspection that Wi((3t + 2)-) _ Wi((3t + 1)-). Finally, by the inductive assumption

StatussgN (3t + 1) = zi = 2Wi((3t + 1)-), in particular it is an integer. This means there

is no service in progress in buffers i12, i21 at time 3t + 1. Thus, whether or not there are

prior jobs in buffers i12, i21 at time 3t + 1, there will be service completions exactly at times

3t + 1.5, 3t + 2, 3t + 2.5 and 3t + 3, as seen again by inspecting Figures 2-3,2-4,2-5. This

proves the second assertion of the lemma. O

Lemma 4. Suppose StatussN2 (3t + 1) Ž 1. Then the job J arriving at time 3t + 2.7 from

outside according the the arrival process A' will be routed to buffer 01i of the network MN

at time 3t + 2.7.

Proof. At time 3t + 1.5 a job arrives into class i32 which requires 1.1 processing time. Since

i32 is the highest priority class in server Si3, then this server will be busy until time 3t + 2.6.

Also the highest priority of this class implies that there is only one job of this class at a

time. Thus at time 3t + 2.6 buffer i32 is empty. Buffer i31 has the second highest priority

and buffer i33 to where the job J arrives has the lowest priority. Thus, whether J will be

blocked from service at arrival time 3t + 2.7 then depends on the number of jobs in buffer

i31 at time 3t + 2.7. The processing time for these jobs is .04 . Therefore J will not be

blocked if and only if there are at most two jobs in i31 since then these jobs will be processed

not later than 3t + 2.6 + .04 + .04 < 3t + 2.7, and otherwise they will be processed at time

3t + 2.6 + .04 + .04 + .04 > 3t + 2.7 or later. We conclude that J will be blocked if and

only if there are at most two jobs in buffer i31. We now show that this is indeed the case

provided StatussN,(3t + 1) > 1.

Jobs arriving into buffer i31 depart from classes i13, i14 and i23. These buffers have zero

capacity and zero service time. Therefore they can arrive into i31 only at a time of arrival

into these three buffers namely at times 3t + 1.6, 3t + 2.1 and 3t + 2.6. In particular there will

be up to three jobs in buffer i31 at time 3t + 2.6. Thus we need to show that it is impossible

for all of these three jobs to arrive into i31. We will show that at least one of these jobs is

blocked. By Lemma 3 either server Sil or Si2 is busy during [3t + 1, 3t + 3). Suppose job

arriving into i13 at time 3t + 1.6 is not blocked. This means Si2 is busy at time 3t + 1.6. By

Lemma 3 it will remain busy till 3t + 2. If it remains busy after this time then it will remain

busy till 3t + 2.5, the job arriving into i23 at time 3t + 2.1 is blocked and the assertion is

established. Thus the only remaining possibility that Si2 finishes service at time 3t + 2 and

remains idle after this. We will show that then a job arriving into i14 at time 3t + 2.6 will

blocked and then the proof is complete. By Lemma 3 Wi((3t + 2)-) > Wi((3t + 1)-) > 1.

Thus there is at least one job either in Sil or i21 at time (3t + 2)- which still requires .5

processing time. We claim that at time (3t + 2) + it is in i12. Indeed it cannot be in i12

since server is idle at this time. For the same reason it cannot be in i22 since service time

in this buffer is zero. Also it cannot be in ill since Sil was idle at (3t + 2)- and the arrivals

into ill do not occur at integer times. We conclude that there is at least one job in i12 at

time (3t + 2) + and no jobs in ill, i21, i22 at this time. At time 3t + 2 there is an arrival into

i22 which then immediately proceeds to i12. Thus we have at least two jobs in i12 at time

(3t + 2) + . The server will work on them during [3t + 2, 3t + 3) and will block a job arriving

into i14 at time 3t + 2.6. This completes the proof. O

Lemma 5. Suppose StatussNg(3t + 1) = 0. Then a job J arriving at time 3t + 2.7 from

outside according the the arrival process A' will exit the system immediately.

Proof. The proof is very similar to the proof of the previous lemma. We need to show that all

three jobs arriving into classes i13, i23, i14 at times 3t +1.6, 3t+2.1 and 3t+2.6, respectively,
will not be blocked and will be in buffer i31 at time 3t + 2.6. Suppose StatussNi (3t + 1) = 0.

Namely Wi((3t + 1)-) = 0. Then the job arriving at time 3t + 1 into buffer i22 according

to A' will immediately proceed to buffer i12 and occupy server Sil during the time interval

(3t + 1, 3t + 1.5). By Lemma 2 the job arriving into buffer i24 at time 3t + 1.02 according to

A' will be processed immediately in buffer i42 and proceed to buffer ill. It will be delayed

in buffer ill till 3t + 1.5 and at this time will depart to buffer i21 and occupy server Si2
during the time interval (3t + 1.5, 3t + 2). Then again a job arriving at 3t + 2 into i22 will

proceed into i12 and occupy the server Sil during the time interval (3t + 2, 3t + 2.5). Finally,

the job arriving into i42 at time 3t + 2.02 will be delayed in ill till 3t + 2.5 and then it will

occupy Si2 during (3t + 2.5, 3t + 3). It is clear from this dynamics that all of the three jobs

arriving at times 3t + 1.6, 3t + 2.1 and 3t + 2.6 into buffers i13, i23, i14 will be processed

immediately and arrive into buffer i31 at the same times 3t + 1.6, 3t + 2.1 and 3t + 2.6. O

Combining the results of Lemmas 4 and 5 we obtain the following conclusion.

Corollary 2. Exactly one job arrives into the class 01i of network MN at time 3t + 2.7 if

and only if StatussNr(3t + 1) 2 1.

Dynamics in MN

We now switch to the analysis of the dynamics in network MN. Recall that by the inductive

assumption StatusMN(3t + 1) = q, we have one job in class 02q at time 3t + 1 which started

service at time 3t, and there are no other jobs in MN at time 3t +1. We call this unique job

AC. Recall, that the configuration (q, x1 , x 2) of the SCM at time t is assumed to be updated to

the configuration (r, yl, Y2) at time t + 1. Introduce mi = a(sq, 1, 1), m 2 = a(Sq, 0, 1), m3 =

a(sq, 1, 0), m 4 = a(sq, 0, 0). Namely, mi, m 2 , m 3 , m 4 are the four possible values of the state

r.

Lemma 6. During the time interval (3t + 2.98, 3t + 3.07) the job KC will be in server 3r,

buffer 3m 4 (respectively buffer 3m 3 or 3m 2 or 3ml) if and only if xl = 2 = 0 (respectively if

and only if x1 = 1, x2 = 0 or x, = 0, x2 = 1 or x1 = X2= 0). This job will leave the network

before time 3t + .34.

Proof. By the inductive assumption the job K: will finish service in buffer 02q at time 3t+2.71

and will arrive into buffer 03q. It will possibly experience a delay in the corresponding server

So1 which depends on the presence/absence of jobs in buffers 011, 012. We now consider four

possible cases.

1. Case x1 = X2 = 0. By the inductive assumption this means StatussN, (3t + 1) =

StatussN,2 (3t+1) = 0. By Corollary 2 this means that at time 3t+2.7 no jobs arrive into

buffers 011, 012. Since only jobs arriving from buffer i33, that is ultimately from A' can

possibly get into buffers 011, 012, then these buffers are empty at least till 3(t+1)+2.7.

In particular the job K: arriving into 03q at time 3t + 2.71 will find an idle server and

will proceed immediately to buffers 3ml, 3m 2 , 3m 3 , 3m 4. In each of these buffers it has

the highest priority. Since the service time in each of these buffers is .09, then it will

arrive into these four buffers exactly at times 3t + 2.71, 3t + 2.8, 3t + 2.89, 3t + 2.98. In

particular it will be in buffer 3m 4 during the time interval (3t + 2.98, 3t + 3.07) and

the assertion is established.

2. Case x1 = 1, x 2 = 0. By the inductive assumption this means StatussN, (3t + 1) >

0, StatussN2(3t + 1) = 0. By Corollary 2 this means that at time 3t + 2.7 no job arrives

into buffers 012 and one job arrives into buffer 011. This job has the highest priority

and requires .09 processing time. The only difference with the previous case is then

that the job KC now experiences a delay .09 in server Sol. Thus it will arrive into buffers

mi, m2, m 3 , m 4 exactly at times 3t + 2.8, 3t + 2.89, 3t + 2.98, 3t + 3.07. In particular it

will be in buffer 3m 3 during the time interval (3t + 2.98, 3t + 3.07) and the assertion is

established.

3. Case xl = 0, x 2 = 1. The analysis is similar. We observe that we will have one job in

buffer 012 and no jobs in buffer 011 at time 3t + 2.7. This buffer 012 has the second

highest priority, the job K: will experience the delay .18 - the processing time of a job

in buffer 012.

4. Case x 1 = x2 = 1. The analysis is similar. In this case we have one job in buffer 011

and one job in buffer 012. The job KI is delayed by .18 + .09 = .27 time units.

Finally, we see again by considering the four cases that the job K/ will depart from the

network at time 3t + 3.34 the latest. This completes the proof of the lemma. O

Lemma 7. At time (3t + 3)-, the server S4r is idle, and the servers S4j,j f r are busy

processing jobs in buffers 4j1.

Proof. At time (3t + 3)- the servers S4j can be busy only serving jobs in buffer 4j1. These

jobs arrive from zero capacity buffer 3j5. These jobs have the highest priority in server S4j

and the second highest in S3j. Also these jobs arrive at time 3(t+ 1) - .01 into 3j5. The only

way for these jobs to be dropped from zero capacity buffer 3j5 is by higher priority buffer

in these server, that is one serving possibly job K1, to be occupied. By Lemma 6 this is the

case exactly for one server, namely server 3r. O

Lemma 8. StatusMN(3t + 4) = r.

Proof. We need to show that at time 3t + 4 in network MN there is one job in class 02r

which initiated service at time 3t + 3 and no jobs elsewhere. By Lemma 6, the job K: will

leave the network before time 3t + 3.34 < 3t + 4. The jobs arriving into zero capacity buffers

4j2, 4j3, j f r at time 3t + 3 will find, by Lemma 7 a busy server 4j and will be dropped

from the network. The job arriving into buffer 4r3 at time 3t + 3 will find by Lemma 7 an

idle buffer and will immediately proceed to one of the subnetworks SNi. The jobs arriving

into buffers 3j5 at time 3t + 3 - .01 will either be dropped from the network or will proceed

to buffers 4jl and after an additional service time .02 will leave the network. Thus they will

leave the network before time 3t + 3 + .01 < 3t + 4. We conclude that only the job arriving

into buffer 4r2 at time 3t + 3 can remain in the network. By Lemma 7 it will find an idle

server S4r and will proceed immediately to buffer 02r and begin service there at time 3t + 3.

This completes the proof. O

Lemma 9. There are no arrivals into classes i41, i51 during the time period [3t + 1, 3t + 4]

other than possibly at time 3t + 3. At time 3t + 3 at most one job arrives into four classes

141,151, 241, 251. Specifically,

1. A141(3t + 3) = 1 if P(sr) = (-1, 0);

2. A151(3t + 3) = 1, if f(s,) = (1, 0);

3. A 241(3t + 3) = 1, if (s) = (0, -1);

4. A 251(3t + 3) = 1, if f(sr) = (0, 1);

5. No arrivals, if /(sr) = (0, 0).

Proof. Arrivals into i42, i52 can occur only from buffers 4j3. These buffers have zero capacity

and zero processing times. The arrivals into these buffers occurs at times 3n, n = 0, 1, ..

By Lemma 7 only server 4r will process a job at time 3t + 3 in buffer 4r3. According to

Table 2.3 and the corresponding description it will be routed to one of the buffers i41, i51

or leave the network precisely as described by the lemma. O

Lemma 10. The following holds for each i = 1, 2:

1. Status2 (3t + 4) = Status2 (3t + 1) if Ai 41(3t + 3) = Ai5 1(3t + 3) = 0;

2. Statusi(3t + 4) = Status2 (3t + 1) - 1 if Ai 41(3t + 3) = 1;

3. Status2 (3t + 4) = Status2 (3t + 1) + 1 if AM~i(3t + 3) = 1;

Proof. By Lemma 1 we have Qi12 (3t + 4)Qi21(3t + 4) = 0. Let us show that at time 3t + 4

there are no jobs in SNi other than possibly RSSNi. By the inductive assumption we have

StatussyN (3t + 1) > 0. In particular at this time there are no jobs in SNi outside of RSSNi.

We need to show that no jobs arriving during (3t + 1, 3t + 4] can be outside of RSSNi at

time 3t + 4.

By Lemma 9 jobs can arrive into i41, i51 during (3t + 1, 3t + 4] only at time 3t + 3 and

only one such job can arrive. Upon arrival they will experience service time either .2 in i41

or .02 in buffer i51 and thus will leave the network before time 3t + 3.2 the latest.

The jobs arriving into i42 at times 3t + 2, 3t + 3, 3t + 4 either will be dropped or proceed

to buffer ill which is a part of RSSNi. Thus at time 3t + 4 these jobs either will be in

RSSNi or leave the network (no jobs in RSSNi feed buffers outside of RSSNi).

We have already analyzed the dynamics of the jobs arriving into buffers i13, i14, i23, i32, i33

at times 3t + 1.6, 3t + 2.1, 3t + 2.6 as a part of the proofs of Lemmas 4,5. In particular, we

saw that these jobs leave SNi before time 3t + 2.72. We have established that there are no

jobs in SNi outside of RSSNi at time 3t + 4.

It remains to analyze the value of Statusi at time 3t + 4. We consider the corresponding

three cases.

1. Ai 41(3t + 3) = Ai 51(3t + 3) = 0. Then, by Lemma 9 there were no arrivals into

classes i41, i51 in time interval [3t + 1, 3t + 4]. Consider the quantity Wi(s) during

this time interval. As long as Wi(s) > 0, by Lemma 1, Wi(s) = -1 at time instances

s not corresponding to the arrival instances. But we have arrivals into i22 at times

3t + 1, 3t + 2,and 3t + 3, and into i42 at times 3t + 1 + .02, 3t + 2 + .02 and 3t + 3 + .02,
ensuring that Wi (s) is not 0 for any period of positive length during [3t + 1, 3t + 4),

(consult Figure 2-3). In this situation, Wi(s), over the time interval [3t + 1, 3t + 4)

increases by 3 units due to 6 arrivals, and decreases by 3 due to 6 service completions.

Thus Wi((3t + 4)-) = Wi((3t + 1)-).

2. Ai51(3t + 3) = 1. Then, the job arriving into i51 at time 3t + 3 after a delay of

.02 will arrive into ill, thus increasing Wi(s) by .5 at time s = 3t + 3.02 (consult

Figure 2-4). Therefore Wi((3t + 4)-) = Wi((3t + 1)-) + .5 and StatussN (3t + 4) =

StatussN&(3t + 1) + 1.

3. AM41 (3t + 3) = 1. Then the job arriving into i41 at time 3t + 3 will occupy server Si4
for .2 time units. As a result the job arriving into i42 at time 3t + 3.02 will find a

busy server and will be dropped from the network. Comparing this situation with the

case Ai41 (3t + 3) = A M5 1 (3t + 3) = 0, and consulting Figure 2-5, we obtain the same

situation, except that there are no arrival into ill at time 3t + 3.02. The net result is

W((3t + 4)-) = W((3t + 1)-)- .5 and StatussN2(3 t + 4) = StatussN(3t + 1) - 1

This completes the proof. O

As an immediate corollary of Lemma 9 and Lemma 10 we obtain

Corollary 3. Status (3t + 4) = yl, and Status2(3t + 4) = y2-

Lemmas 8 and Corollary 3 prove the induction step for Theorem 4, so its proof is now

complete. O

2.5 Conclusion

We have shown that there does not exist an algorithm for determining stability of multiclass

queueing networks operating under the class of static non-preemptive buffer priority schedul-

ing policies. Namely, the underlying problem is undecidable. There are, however, special

cases for which the stability can be determined. Characterization of those special cases is

of interest. Also of interest is whether the above result holds for FIFO scheduling policy,

another frequently studied scheduling policy. Our model made several simplifying assump-

tions. We allow for some buffers to be finite and we allow zero service times. We have little

doubt that the stability property remains undecidable even without these assumptions, but

at present we do not have a proof.

Chapter 3

Counting list colorings of a graph

This chapter contains our contribution to the problem of counting the number of list colorings

of a graph, and has the following structure. The model description and the main result are

stated in Section 3.1. Some preliminary technical results are established in Section 3.2. The

description of the algorithm and its complexity are subject of Section 3.3. The principal

technical result is established in Section 3.4. The key result is Theorem 6, which establishes

the correlation decay result on a computation tree arising in computing the marginals of the

uniform distribution on the set of all list colorings. Section 3.5 provides a brief comparison

between the correlation decay result on a computation tree and the correlation decay in

conventional sense. Some conclusions and open problems are in Section 3.6.

3.1 Definitions and the main result

We consider a simple graph G with the node set V = {vi, v2 ,..., VIvi}. Our graph is assumed

to be triangle-free, namely the girth g (the size of the smallest cycle) is at least 4. Let E

denote the set of edges, A(v) denote the degree of the node v, and A(v) = max, A(v) denote

the degree of the graph. Each node v is associated with a list of colors L(v) C {1, 2,..., q} =

UVEVL(v), where {1, 2,...,q} is the total universe of colors. We let L = (L(v), 1 < v < n)
denote the vector of lists. We also let IJLII = max, IL(v)l be the size of the largest list.

The list-coloring problem on G is formulated as follows: associate each node v with a color

c(v) E L(v) such that no two nodes sharing an edge are associated with the same color.

When all the lists are identical and contain q elements, the corresponding problem is the

problem of coloring G using q colors. We let IL(v)I denote the cardinality of L(v). It is easy

to see that if

IL(v) I A(v) + 1 (3.1)

for every node v, then a simple greedy procedure produces a list-coloring. We adopt here a

stronger assumption

IL(v)I _ aA(v) + /, (3.2)

where a is an arbitrary constant strictly larger than a**, the unique solution of a** exp(-) =

2. That is a** P 2.8432.... We also assume that / is a large constant which depends on a.

To be more specific we assume that / = ,(a) is large enough to satisfy

1 1 (1+.!)
(1 - 1-) ae - > 2, (3.3)

which is always possible when a > a**.

Let Z(G, L) denote the total number of possible list-colorings of a graph/list pair (G, L).

The corresponding counting problem is to compute (approximately) Z(G, L). In statistical

physics terminology, Z(G, L) is the partition function. We let Z(G, L, X) denote the number

of list colorings of (G, L) which satisfy some condition X. For example Z(G, L, c(v) =

i, c(u) = j) is the number of list colorings such that the color of v is i and the color of u is j.

On the space of all list colorings of G we consider a uniform probability distribution,
where each list coloring assumes weight 1/Z(G, L). For every node/color pair v E V, i E L(v),

PG,L (c(v) = i) denotes the probability that node v is colored i with respect to this probability
measure. The size of the instance corresponding to a graph/list pair(G, L) is defined to be

n = max{IVI, IEl, q}.

For convenience, we restate here the definition of a FPTAS.

Definition 4. An approximation algorithm A is defined to be a Fully Polynomial Time

Approximation Scheme (FPTAS) for a computing Z(G, L) if given arbitrary 6 > 0 it produces

a value Z satisfying

1- < - <1+6,
Z(G, L)

in time which is polynomial in n, .

We now state our main result.

Theorem 5. There exist a deterministic algorithm which provides a FPTAS for computing

Z(G, L) for arbitrary graph list pair G, L satisfying (3.2), when the size of the largest list

IILII is constant. The same algorithm has complexity 2 0(log2 n), without any restriction on

IILI , where n is the size of the instance.

3.2 Preliminary technical results

3.2.1 Basic recursion

We begin by establishing a standard relationship between the partition function Z(G, L)

and the marginals PG,L(c(v) = i). The relation, also known as cavity method, is also the

basis of the Glauber dynamics approach for computing partition functions.

Proposition 2. Consider an arbitrary list coloring il,..., ilvl of the graph G (which can

be constructed using a simple greedy procedure). For every k = 0, 1,..., IVI - 1 consider a

graph list pair Gk, Lk, where (Go, Lo) = (G, L), Gk = G \ {vi,... , vk}, k > 1 and the list Lk
is obtained by deleting from each list L(vj), 1 > k a color i,, r < k if (vj, vr) E E. Then

Z(G,L)= I •I-k,Lk(C(Vk) = ik)-
O<k<IVI-1

Proof. We have

,L() = i) = Z(G, L, c(vi) = i) - Z(G1, L 1)
Z(G,L) Z(G, L) '

from which we obtain

Z(G, L) = PG,L(C(vl) = il)-'Z(GI, L1).

Iterating further for k > 2 we obtain the result. O

Our algorithm is based on a recursive procedure which relates the number of list colorings

of a given graph/list pair in terms of the number of list colorings of some reduced graph/list

pairs.

Given a pair (G, L) and a node v E G, let vl,..., vm be the set of neighbors of v. For

every pair (k, i) E {1,... , m} x L(v) we define a new pair (Ge, Lk,i) as follows. The set of

nodes of G is Vk = V \ {v} and Lk,i(vr) = L(vr) \ {i} for 1 < r < k, Lk,j(u) = L(u) for all

other u. Namely, we first delete node v from the graph. Then we delete color i from the lists

corresponding to the nodes Vr, r < k, and leave all the other lists intact.

Lemma 11. The graph/list pair (G,, Lk,j) satisfies (3.2) for every 1 < k < m, j E L(v),

provided that (G, L) does.

Proof. When we create graph G, from G the list size of every remaining node either stays

the same or is reduced by one. The second event can only happen for neighbors vl,..., v,

of the deleted node v. When the list is reduced by one the degree is reduced by one as

well. Since a > 1, the assertion follows by observing that IL(vk) & aA(vk) + + implies

IL(vk) - 1 > a(A(vk) - 1) + p. O

The basis of our algorithm is the following simple result.

Proposition 3. Given a graph/list pair (G, L) and a node v, suppose A(v) = m > 0. For

every i E L(v)

PL() = i) <k<(- G,,Lk (v) = i))(34)
G(,(=ijEL(v) Hl<k<m(1 - PG,,, (c(v) j))

The recursion as well as the proof is similar to the one used by Weitz in [Wei06], except

we bypass the construction of a self-avoiding tree, considered in [Wei06].

Proof. Consider a graph/list (G,, L) obtained simply by removing node v from G, and

leaving L intact for the remaining nodes. We have

PG,L(C(v) = i)
G,L (C(V) = i) =

ZjEL(v) PG,L(C(v) = j)
Z(G, L, c(v) -= i)Z-1 (G, L)

EjeL(v) Z(G, L, c(v) = j)Z-1(G, L)

Z(G,, L, c(vk) = i, 1 < k < m)

EjEL(v) Z(GV, L, C(vk) # j, 1 < k < m)
PG,,L(C(vk) 4 i, 1 < k < m)

ZjEL(v) PG,,L(c(vk) $ j, 1 < k < m)

Now, for every j E L(v)

PG,,L(c(vk) j, 1 < k < m) = PG,LG(C(v1) • j)
2<k<m

PG,,L(C(vk) iIjc(vr) :ý j, 1 < r

We observe that L 1 ,j = L for every j (no colors are removed due to the vacuous condition

r < 1), and PG,,L(C(Vk) ijlc(vr) 7 j, 1 < r < k) = PG,,Lk,j ((Vk) $ j). Namely

?PG,L(C(Vk) j, 1 < k < m) = I GLPG,,k(c(Vk) j)
l<k<m

S(1 - G,Lk, (C(Vk) = j))
1<k<m

Substituting this expression we complete the proof.

3.2.2 Upper and lower bounds

The condition (3.2) allows us to obtain the following simple bounds.

Lemma 12. For every G, L, node v and a color i E L(v)

PG,L(C(V) =
1

-3

Proof. Observe that given an arbitrary coloring of the neighbors v,.. , vm of v, there are

t a least (L(v)| - A(v) '> p colors remaining. Then t ds.

From this simple bound we now establish a different upper bound and also a lower bound

<k)

using the triangle free assumption.

Lemma 13. There exist co = co(a) E (0, 1) and 0 > 0 such that for every G, L, node v and

a color i E L(v)

q-1(1 - 0-l) < IP GL(c(v) = i) < 1
2A (v)(1 + eo)

We note that the upper bounds of this lemma and Lemma 12 are not comparable, since

values of A(v) could be smaller and larger than 3.

Proof. We let vl,..., vm denote the neighbors of v, m = A(v) and let vkr denote the set of

neighbors of vk, other than v for k = 1,..., m. We will establish that for any coloring of

nodes (vkr), which we generically denote by c, we have

q-1(1 - 0-')A < PG,L(c(v) = ilc) < 12m(1 + co)

The corresponding inequality for the unconditional probability then follows immediately.

Now observe that, since the girth is at least 4, then there are no edges between vk. Then

PG,L(c(v) = ilc) is the probability PT(c(v) = i) that v is colored i in a depth-1 tree T A

{v, vl,..., vm}, where the lists L(vk) Of Vk are obtained from L(vk) by deleting the colors used

by the neighbors vkr by coloring c. From the assumption (3.2) we have that the remaining

lists L(vk) have size at least IL(vk)l - A(vk) P/ each. Let ti = PT(c(v) = i). For each color

j E L(v) let tj,k = 1/IL(vk)| if j E L(vk) and = 0 otherwise. Proposition 3 then simplifies to

F1<k<m(1 - ti,k) 1S= Z L(v) i<k<m(1 - tj,k) - jEL(v) -Ii<k<m(1 - tj,k)' (3.5)

for every i E L(v), where 1-<k<m is defined to be equal to unity when m = 0. From the

equality part, applying tj,k • 1//, we get

ti 2 IL(v)l-V(1 - 3-l)m > q-'(1 - j-I)A,

and the lower bound is established.

We now focus on the upper bound and use the inequality part of (3.5). Thus it suffices

to show that

S JJ(1 - tj,k) > 2(1 + ~o)m (3.6)
jEL(v) k

for some constant Eo > 0. Using the first order Taylor expansion for log z around z = 1,

J (1 - t,)
1<k<m

H e<log(1-tk,k)
l<k<m

1 t2

1- k2(k) j,k

l<k<m

for some 0 < Oj,k < tj,k, since -1/z 2 is the second derivative of log z. Again using the bound

tj,k < 1/3, we have (1- Oj,-k) 2 > (1 - 1/3)2. We assume that 3 is a sufficiently large constant

ensuring (1 - 1/0)2 > 1/2. Thus we obtain the following lower bound

t2

•,k-(1-(/+) Ek tj,k A)T
e--tJ,

k-
2(1_1/ -)2 L ---

1<k<m 1<k<m

where Tj stands for Zk tj,k. Then

E 1 (1
jEL(v) 1<k<m

- tj,k) E e-(1+v)T L(v)Ie-L(I)I)ZjTy

jEL(v)

where we have used an inequality between the average arithmetic and average geometric.

Finally we observe

jEL(v)

'-~ '-~

tj,k 2_, 2_.w -(|)l
j,k l<k<mjEL(Vk)

Thus

S 1 (1 - tj,k) > L(v)le-I(v)'I(+•) > (am + /)e o(1) > ame)
jEL(v) 1<k<m

The condition a > a** implies that there exists a sufficiently large /3 such that ae-) > 2.

We find 0 < co < .1 such that ae -(+) = 2(1 + co). We obtain a required lower bound

H (1 - tj,k) H

(3.6).

3.3 Algorithm and complexity

3.3.1 Description of an algorithm

Our algorithm is based on the idea of trying to approximate the value of PG,L (c(v) = i),

by performing a certain recursive computation using (3.4) a fixed number of times d and

then using a correlation decay principle to guarantee the accuracy of the approximation.

Specifically, introduce a function 1 which takes as an input a vector (G, L, v, i, d) and takes

some values 4(G, L, v, i, d) E [0, 1]. The input (G, L, v, i, d) to 4 is any vector, such that

such that v is a node in G, i is an arbitrary color, and d is an arbitrary non-negative

integer. Function 4D is defined recursively in d. The quantity O "attempts" to approximate

PG,L (c(v) = i). The quality of the approximation is controlled by d. We define (D as follows.

For every input (G, L, v, i, d) such that i ' L(v) we set 1(G, L, v, i, d) = 0. Otherwise we

set the values as follows.

* When d = 0, we set 4(G, L, v, i, d) = 1/IL(v)I for every input (G, L, v, i). (It turns out

that for our application the initialization values are not important, due to the decay

of correlations).

* For every d > 1, if A(v) = 0, then D(G, L, v, i, d) = 1/L(v)I for all i E L(v). Suppose

A(v) = m > 0 and vi,... , vm are the neighbors of v. Then for every i E L(v) we define

[1 1 Hll<k<m(1 ,, Lk,,,Uk, i,d - 1))4D(G, L, v, i, d) = min 2(1 1 1H<k<m(l - .(GVLk,-, Vk, i, d - 1))

2(1 + co)m _0' 1jEL(v)J1<k<m(1 - 1(GV, Lk,j, Vk, j, d - 1))

(3.7)

The last part of the expression inside min[.] corresponds directly to the expression

(3.4) of Proposition 3. Specifically, if it was true that D(G(, Lk,j, Vk, j, d - 1) =

IPGv,Lk,j (CU k) = j), then, by Lemmas 12,13, the minimum in (3.7) would be achieved by

the third expression, and then the value of 1(G, L, v, i, d) would be exactly PG,L (c(v) =
i).

We will use the correlation decay property to establish that the difference between the

two values, modulo rescaling, is diminishing as d -- o00. Note that the computation of D

can be done recursively in d and it involves a dynamic programming type recursion. The

underlying computation is done essentially on a tree of graph list pairs G,, L, generated

during the recursion. We refer to this tree as computation tree with depth d.

We now describe our algorithm for approximately computing Z(G, L). The algorithm is

parametrized by the "quality" parameter d.

Algorithm CountCOLOR

INPUT: A graph/list pair (G,L) and a positive integer d.

BEGIN

Set Z=1,G=G,L= L.

While G $ 0, find an arbitrary node v E G and a color i E L(v). Compute

(3.8)

Set Z = -l1 (v, i), = G \ {v}, L(u) = L(u) \ {i} for all neighbors u of v in G,

and L(u) remains the same for all other nodes.

END

OUTPUT: Z.

3.3.2 Some properties

We now establish some properties of D.

5(v, i) 4 (G), L, v, i, d).

Lemma 14. The following holds for every G, L, v, i E L(v), d > 0.

1((G, L, v, i, d) 5 min 21 1] ,
0' 2(1 + co)L(v)

4'(G, L, v, i, d)< 1
iEL(v)

' (G, L, v, i, d) Ž q-l(1 - 1/0)).

(3.9)

(3.10)

(3.11)

Proof. (3.10) follows directly from the definition of 4D. To show (3.9) we consider cases.

For d > 1 this follow directly from the recursion (3.7). For d = 0, this follows since

1(G, L, v, i, O0) = 1/IL(v) <5 1/(aA(v) + ,) and 2(1 + co) < 2.2 < a. We now establish

(3.11). For the case d = 0 this follows since 1/IL(v)l > 1/q. For the case d > 1 this follows

from the recursion (3.7) since 1/0, 1/(2(1 + Eo)A(v)) > 1/q and the third term inside the

minimum operator is at least q-'(1 - 1//)A, using upper bound 4(G, L, v, i, d - 1) 5 1/,

which we have from (3.9).

Ol

3.3.3 Complexity

We begin by analyzing the complexity of computing function (I. Recall that n = max(lVI, |El, q)

is the size of the instance.

Proposition 4. For any given node v, the function 4 can be computed in time 20(d(lg IILll+log A))

In particular when d = O(logn), the overall computation is 20(log 2n). If in addition the size

of the largest list jILI| is constant then the computation time is polynomial in n.

Proof. Let T(d) denote the complexity of computing function (D(-, d). Clearly, T(0) =

O(IILII). We now express T(d) in terms of T(d - 1). Given a node v, in order to com-

pute ((G, L, v, i, d) we first identify the neighbors vl,..., vm of v. Then we create graph/list

pairs G,, Lj,k, 1 < k < m,j E L(v), compute)(., d - 1) for each of this graphs, and use this

to compute ((G, L, v, i, d). The overall computation effort is then

T(d) = O(IILIIAT(d - 1)).

Iterating over d we obtain T(d) = O(IILt d+lAd) = O(2 (d+1)(logIILl+loga)) = 2 0(d(logllLl+A))

When d = O(logn), we obtain a bound 20('og2 ") . If in addition IILII = 0(1), then the

assumption (3.2) implies A = 0(1), and then T(d) = n0 (1). E

The following is then immediate.

Corollary 4. Suppose d = O(log n). Then the complexity of the algorithm CountCOLOR is

2 0(log2 n) . If in addition the size of the largest list JIL| is constant, then CountCOLOR is a

polynomial time algorithm.

3.4 Correlation decay

The following is the key correlation decay result.

Theorem 6. Consider a triangle-free graph/list pair (G, L) satisfying (3.2),(3.3). There

exist constants 0 < E < 1 which depend only on a, such that for all nodes v, colors i E L(v)

and d > 0

max Ilog PG,L(c(v)=i) -log 1(G,L,v,i,d) <O(n2(-)d). (3.12)

This theorem is our key tool for using the values of 4 for computing the marginals

PG,L (c(v) = i). We first establish that this correlation decay result implies our main result,

Theorem 5.

Proof of Theorem 5. We consider an arbitrary instance (G, L) with size n and arbitrary

6 > 0. We may assume without the loss of generality that n is at least a large constant

bigger than C/6, for any universal constant C, since we can simply extend the size of the in-

stance by adding isolated nodes. The proof uses a standard idea of approximating marginals

IPG,L(c(v) = i) and then using Proposition 2 for computing Z(G, L). From Proposition 2,
if the algorithm CountCOLOR produces in every stage k = 1, 2,..., IVI - 1 a value &(v, i)

which approximates G,,Lk (c(vk) = i) with accuracy

1-- < 1+- (3.13)
n - IPG.,L k (C(k) = i) n

then the output Z of the algorithm satisfies

() n < (IV Z (G , L) 6
•I

n

1--6 n< 1-- < < (1+) < (1+-

n n
- n n

Since |VI < n and n is at least a large constant, we obtain an arbitrary accuracy of the

approximation. Thus it suffices to arrange for (3.13). We run the algorithm CountCOLOR

with d i [log], where c is the constant from Theorem 6. This choice of d gives (1- e)d <

1/n 4. Theorem 6 with the given value of d then implies

Slog ,(c(v) = i) lo L(c(v) = i) 1 1
log = log v < O(n2 = O().

p(V, i) v, i, d) n4 2

Thus

1 1 (v,i) - 1 1
1 - O() _ exp (- O()) G, = i) < exp (O()) = 1 + O()

This gives us (3.13) for all n > C/6 where C is the universal constant appearing in O(.).

This completes the analysis of the accuracy. The complexity part of the theorem follows

directly from Corollary 4. [

The rest of the section is devoted to establishing this Theorem 6. The basis of the proof

is the recursion (3.4). As before, let vl,...,vm be the neighbors of v in G, m = A(v).

Observe that (3.12) holds trivially when m = 0, since both expression inside the absolute
value become 1/jL(v)j and the left-hand side becomes equal to zero. Thus we assume that

m > 1. Denote by mk the degree of vk in the graph G,. In order to ease the notations, we
introduce

Xi = PG,L (c(v) = i), i E L(v),

Xi,k = PGv,Lk, (c(vk) = i), i E L(v), 1 < k < m

xz = 1)(G, L, v, i, d), i E L(v),

Xk = ((GV, Lki, vk, i, d - 1), i E L(v)n Li,k(vk),l < k < m

Proposition 5. There exists a constant E > 0 which depends on a only such that

1 1
- max I log(xi) - log(x*)[< (1 - e) max - log(xj,k) - log(xzk) (3.14)
m iEL(v) jEL(v),k:mk>0 mk

First we show how this result implies Theorem 6:

Proof of Theorem 6. Applying this proposition d times and using the fact that we are sum-

ming over k: mk > 0, we obtain

- max [log(xi) - log(x*)] • M(1 - e)d
m iEL(v)

where

M = max log PG,,L, (c(v) = 1) - log D(G., L,, v, , 0)

and the maximum is over all graph/list pairs G,, L, appearing during the computation of

4D and over all colors 1. Recall that if I does not belong to the list associated with node v

and list vector L,, then PG,,L, (c(v) = 1) = 4(G,, L,, v, 1, 0) = 0 (the first is equal to zero by

definition, the second by the way we set the values of (). Otherwise we have from Lemma 12

and part (3.11) of Lemma 14 that absolute value of the difference is at most

log q + A log(l3/(3 - 1)).

Since m < A < n, 3 is a constant which only depends on a, and q < n, then we obtain

M = O(n) and mM = O(n 2). 0

Thus we focus on establishing Proposition 5.

Proof of Proposition 5. Observe that for every i E L(v) \ Lk,j(vk) we have Xi,k = Xk = 0.
This is because the probability of node vk obtaining color i is zero when this color is not in

its list. Similarly, the corresponding value of (is zero, since we set it to zero for all colors

not in the list. For every i E L(v) introduce

Ai fj (1 - xi,k) (3.15)
1<k<m

AA = A4
jEL(v)

Introduce A!, A* similarly. Applying Proposition 3 we obtain

Ai

' A

X* -x.

(3.16)

(3.17)

(3.18)min [1 1 A*
mn2(1 + co)re' 3' A*J

Let

A*

W t A*

We claim that in order to establish (3.14) it suffices to establish the bound
1
11 log i - log _i 5 (1 - e)
m

1
max - log(xj,k) - log(xk)kjEL(v),k:mk>O mk

Indeed, if i~ x$, then x* = min[2(1 o)m,]. On the other hand, by Lemmas 12,13 we have

xi 5 min[2(1+)m, , implying xi < i, and the bound for i implies the bound (3.14).

We have

max Ilog(x2) - log(x) = max log Ai - log A* - log A + log A*.
iEL(v) iEL(v)I I

(3.19)

We introduce auxiliary variables yi = log(xi), Yi,k = log(xi,k). Similarly, let y" = log(i), Yi*k =

log(xk). Define y = (yi,k),y* = (Yi*k). Observe that if mk = 0 then for every color i

Xi,k = ,k. This follows since both values are 1/ILi,kI when i E Li,k and zero otherwise. This

implies yi,k = 7y*,k. Then we rewrite (3.19) as

max lyi - y = max
iEL(v) iEL(v) z

k:mk>O

-log(H (1I
jEL(v) 1lk<m

k:mk>O

- exp(y,k))) + log

log(1 - exp(yk))

(II (1-exp(yk)))
jEL(v) l<k<m

(3.20)

and

log(1 - exp(yi,k)) -

where the sums E1<k<m were replaced by -k:mk>0 due to our observation Yi,k = Yk when

mk = 0.

For every i denote the expression inside the absolute value in the right-hand side of

equation (3.20) by gi(y). That is we treat y* as constant and y as a variable. It suffices to

prove that for each i

i(y) (1 -) max -1 log(xj,k) - log(Xk) (3.21)
jEL(v),k:mk>O mk

Observe that gi(y*) = 0. Let g2(t) = g9(y* + t(y - y*)), t E [0, 1]. Then gi is a differentiable

function interpolating between 0 and gi(y). In particular, g2(1) = i (y). Applying the Mean

Value Theorem we obtain

19g(1) - g (0) l = Ig(1) 1 sup g1 (t)l
O<t<l

=sup= sup gV (y -y *)),(y - y*)
O<t< 1

where the supremum is over values of t. We use a short-hand notation

11j = 1 (1 - exp(yj,k + t(yj,k - Yk)))
l<k<m

For each t we have

Sexp(yi,k +t(yi,k - Yk))
Vg(y* + t(y - y*))(y - y*) = z - exp(yi,k + ti,k(y -)))

k:mk>O 1 - exp(yi,k + t(yi,k - Ysk))

ZjeL(v) Zl<lkm 1-exp(yj,k+t(yj,k-Yk)) (Y,k -
+

jEL(v) I1

Again using the fact Yj,k = Yj,k when mk = 0, we can replace the sum Ell<k< by -k:mk>O

in the expression above. For each j we have from convexity of exp

exp(y),k + t(yj,k - j*,k)) < (1 - t) exp(y•,k) + t exp(y),k)

= (1 - t)Xj,k + tj*, k
1

- 2(1 + co)mk

where the last inequality follows from Lemma 13 and part (3.9) of Lemma 14. This bound is

useful for terms with mk > 0 (for this reason we only kept these terms in the sum Zk:mk>O)"

Similarly using Lemma 12 and again part (3.9) of Lemma 14 we obtain

1 - exp(yj,k + t(yj,k - Y.,k)) 1 - (1 - t) exp(y*,k) - t exp(yj,k)

1 - (1 - t)Xj,k - tj, k

1- 1fl

We obtain

Vg9(y* + t(y - y*))(y - y*)
k1<- m> (1 - 1)2(1 + C-o)mnk Yik - Yi*kI

k:Mk>0)

EjEL(v) Ek:mk> (1 -)-12-1(1 + eo)-lmjllYj,k - Y*,klI 1

yjEL(v) 11i

(I -)Z(I + Eo) jeL(v),k:mk>O

+ max
(1 -)2(1 + Co) jEL(v),k:mk>O

m
1 + max
(1 -)(1 + Co) jEL(v),k:mk>O

IYj,k - YJlkI
mk

IYj,k - Y;,kI
mk

IYj,k - Yj,kl
mk

Combining with (3.20) we conclude

Ii - yI 1 Yj,k - Ikmax < max
i•L(v) m (1 -)(1 + o) jEL(v),k:mk>O mk

sup
o<t<l

max
/1 1 \.,

We now select a sufficiently large constant 0 = f•(o) such that

1
l-E= < 1.

(1 - $)(1 + co)

This completes the proof of Proposition 5. O

3.5 Comparison of the correlation decay on a computa-

tion tree and the spatial correlation decay property

As we have mentioned above, the (spatial) correlation decay is known to hold for the color-

ing problem in a stronger regime a > a* r 1.763..., then the regime a > a** considered

in this paper [GMPO5]. This decay of correlation is established in a conventional sense:

for every node v the marginal probability P(c(v) = i) is asymptotically independent from

changing a color on a boundary of the depth-d neighborhood B(v, d) of v in the underlying

graph. In fact it is established that the decay of correlation is exponential in d. It is natural

to try to use this result directly as a method for computing approximately the marginals

P(c(v) = i), for example by computing the marginal PB(v,d)(c(v) = i) corresponding to

the neighborhood B(v, d), say using brute force computation. Unfortunately, this conven-

tional correlation decay result is not useful because of the computation growth. In order to

obtain E-approximation of the partition function, we need order O(e/n) approximation of

the marginals, which means the depth d of the neighborhood B(v, d) needs to be at least

O(log n). Here n is the number of nodes. But the resulting cardinality of B(v, d), even for

the case of constant degree graphs is O(A logn) - no(1) - polynomial in n and the brute-force

computation effort would be exponential in n. Notice that even if the underlying graph has

a polynomial expansion IB(v, d)l 5 dr, for some power r > 1, the brute-force computation

would still be O(exp(logr n)) which is super-polynomial. This is where having correlation

decay on computation tree as opposed to the conventional graph theoretic sense helps.

3.6 Conclusions

We have established the existence of a deterministic approximation algorithm for counting

the number of list colorings for certain classes of graphs.

Along with [BG06] and [Wei06] this work is another step in the direction of develop-

ing a new powerful method for solving counting problems using insights from statistical

physics. This method provides an important alternative to the existing MCMC sampling

based method as it leads to a deterministic as opposed to a randomized algorithm.

The principle insight from this work, along with the work of Weitz [Wei06] is the advan-

tage of establishing the correlation decay property on the computation tree as opposed to the

original graph theoretic structure. While we have established such correlation decay only in

the regime a > 2.8432..., we conjecture that it holds for much lower values of a. In fact,
just as it is conjectured that the Markov chain is rapidly mixing in the regime q > A + 2, we

conjecture that the correlation decay on the computation tree holds in this regime as well,
at least for the case of constant number of colors q.

Chapter 4

Markov random field and partition

function

In this chapter we extend some of the results of the previous chapter to Markov random

fields.

The main conceptual point of Chapter 3, namely construction a recursion of the form

(3.4), construction of a corresponding computation tree, establishing correlation decay prop-

erty and application to a counting problem, can be extended to an arbitrary model of random

constraint satisfaction problems with multiple values. In this chapter we provide details us-

ing a very general framework of Markov random fields (MRF), also known as graphical model.

We show that generalizing (3.4) is straightforward. It is establishing the decay of correla-

tion which presents the main technical difficulty. We provide a simple and general sufficient

condition and then illustrate the approach on specific statistical physics problem, namely

q-state Potts model. Here we restrict ourselves for simplicity to MRF defined on simple

graphs. Extensions to multi-graphs are possible as well.

4.1 Model and the preliminary results

A Markov random field (MRF) is given as a graph G with node set V = {vi,..., vIv 1}, edge

set E, an alphabet X and set of functions q, : X :--+ R+, v E V, fv,,, : X -- R+, (v, u) e E.

Consider a probability measure on XIvI defined by

(X =) =

for every x = (x,) E XIVi, where Z = EX l 1EVv 4(x,) H(V,U)EE fv,,(x,, xU) is the normal-

izing constant called the partition function. Here X = (Xv) is the random vector selected

according to this probability measure. In the case Z = 0, the MRF is not defined. From

now on assume that

7 •vEV ¢(x,) H(v,U)EE fv, (x,, xZ) > 0 for at least one x = (xv) E XIVi.

Let us see that the problem of list-coloring can be cast as a Markov random field, where

P(.) corresponds to the uniform probability distribution on the set of valid colorings. Given

an instance of a list-coloring problem (G, L) with a universe of colors {1,... q}, we set

X = {1,...,q}, Ov(i) = 1{i E L(v)} for all node/color pairs v, i, and f,,,(i,j) = 1{i $ j},
where 1{-} is the indicator function. It is not hard to see that P(x) = 1/Z if x corresponds

to a valid coloring and = 0 otherwise, and Z = Z(G, L) is the total number of valid list-

colorings. Thus this MRF corresponds to the uniform distribution on the set of proper

colorings.

An instance of a MRF is denoted by M = (G, X, ¢, f), with q = (v,), f = (fv,,). We

will write PM and ZM for the corresponding probability measure and the partition function,

respectively, in order to emphasize the dependence on the particular instance of the MRF.

Computation of ZM is the principle goal of this chapter. As in the case of list-coloring model,
denote by ZM [X] the sum of the terms in the partition function which satisfy some condition

X.
Observe that if 0, fv,l > 0 for all nodes and edges then PM (X = x) > 0 for every

x = (x,), v E V. Moreover, if fV,t = c for all edges for some constant c, then we obtain a

product form solution

PM(X=X)=J JZV)

Thus we might expect the correlation decay to take place when the values of fv,, are close

to each other. This is the regime within which we will establish our results. Let kmin =

minv,x Ov(x), ¢max = maxv,x ¢v(x) and co = ¢max/¢min. Also let fmin = min(v,u)EE,x,yEX fv,,(x, y), fma =

maX(v,u)EE,X,yX fv,u(X , y) and let c = fmax/fmin. From now on we assume that the following

conditions hold

,(x) > 0, Vv V, EX (4.1)

fZ,,(x, y) > 0, V(v, u) E E, x, y E X (4.2)

These conditions in particular ensure that cf < oo00. The following condition will be used in

lieu of (3.2)

y (c, - cf^)A |X| < 1. (4.3)

The size of an instance M is

n = max (IVi l, , , log max, I log n, I log fma- , I log fil).

We now state the main result of this chapter.

Theorem 7. There exist a deterministic algorithm which provides an FPTAS for computing

ZM for an arbitrary MRF instance M satisfying (4.1),(4.2),(4.3), whenever IXI and A are

constants.

Our first task is obtaining a generalization of the cavity recursion given by Proposition 2.

Given a MRF M = (G, X, q, f), an arbitrary node v and an arbitrary element x* E X we

consider a new MRF instance T,. [M] = (G, X, ¢, f) defined as follows. The graph G is the

subgraph of G induced by all nodes other than v. X = X and f = f. q is defined as follows.

For every u which is a neighbor of v, &,(x) = V•-i , fv,(x*, x), where A(v) is the degree of v

in G. For all the remaining nodes u we set O, = $,.

Given a MRF M = (G, X, 0, f) let vl,..., vIvl be an arbitrary enumeration of nodes.

Consider an arbitrary x* = (x*1,... , *) such that P(x*) > 0. Define Mo = M and

Mk = TVk,Xk [Mk-1], k = 1,2,..., 1VI, where M1 vl is an empty MRF and its partition
function is set by default to unity.

Proposition 6. The following identity holds.

ZM = -P ((XVk= ,k)
l<k<IVI

Proof. Let A(vi) = H (v,u)EE, v,u•vi fV,, (xv, xU)

We have

PZXEXIVI:XjXV": 1 A(vl)¢vl (x2) 1U:(v1,u)EE fVl,U(XZ1,jtX) 1-A$V1 O(xU)

ZZM

ZM1
ZM'

where the second equality follows since ¢(x:,) I,:(v,,i)E f(*,x,,) = Hn €1(Vx) and the

second product is over neighbors u of vi in G. Iterating further for k > 2 we obtain the

result. O

The identity in Proposition 6 provides an important representation of the partition func-

tion in terms of marginal probabilities. Thus, if we compute (approximately) these marginal

probabilities, we can use them to obtain the value of the underlying partition function.

4.1.1 Basic recursion and the algorithm

Our next task is constructing a generalization of (G, Lk,i) and extending Proposition 3

to MRF. Given a MRF M = (G, X, 0, f) and a node v let M, denote the MRF instance

obtained naturally by removing node v. Namely, we keep 4, and f,l, intact for all the

nodes u - v and edges (u, w), u, w = v. Also, given a MRF M = (G, X, ¢, f), a set of

nodes vl,...,v, C V and a set of elements zl,...,xr E X we construct a MRF denoted

by MI[vl, x 1;... ;Vr, Xr] = (G, ¢, f) as follows. The corresponding graph G is the subgraph

induced by nodes V \ {vl,..., vr }. For every node u e G which has at least one neighbor

among vl,..., v we set &,(x) = Hi fv,,1 (xi, x)¢u(x), where the product is over i = 1, 2..., r

such that (vi, u) is an edge in G. For all the remaining u we set &, = ¢,. We also set f = f.

The interpretation for M[vl, xl;... ;vr, Xr] comes from the following simple fact.

Lemma 15. For every event £ corresponding to the probability measure PM, the following

holds

PM(9I Aklr XVk = Xk) = PM[vi,xl;...;vr,xr] ().

Proof. The proof is obtained immediately by summing over all of the elementary events x E E

and observing that the terms ,,k (Xk) cancel in the ratio P'M(AAk<rXvk = Xk)/PM(Ak<rXvk =

Zk). O

Observe that the value of cf corresponding to the MRF M[vi, xj;...; v,, Xr] is the same of

M. Thus, should M satisfy conditions (4.1),(4.2),(4.3), so does the instance M[vi, xl; ...; tv, Xr].

Moreover, cý defined for this MRF satisfies

cý < c~c (4.4)

Now we obtain a recursion which serves as a basis for our correlation decay analysis and

construction of an algorithm.

Proposition 7. For every node v and its neighbors vl,..., V,, the following identity holds

for every xo E X:

=v(xo) EX:,...,xmEX Hm=1 fv,vk(XO, Xk)PM[vl,Xl;...;vk-1,Xk- 1](Xvk = Xk)

(X 0) E x () Exi,...,XmEX HIk=l fv,,v k(X Xk)lPM[vl,xi;...;vk-,lZk- 1l(Xvk = Xk)

(4.5)

where the sum ••, = 1 when m = 0.

Proof. The case m = 0 is immediate. Assume m > 0. For every xo E X we have the

following identity

=v(xO) ExI,...,XmEX ZM"v[XV1 = XI,... , Xvm = XmI Hk= f,vk (xo,0 k)
PM[(XI = X1)7 = xEX OV(X) Ex1,--,XmExZu[X , = z ,.X = XMI rm=k1 fVVk X)

We divide both parts by ZM, and write

ZMF,[XV1 = X,...X m = Xm] m Z/v [XV = zl,...,X• = Xk]

ZMv k= ZM[XvL = X1...,Xvk-1 k-1k]

where the term corresponding to k = 0 is identified with ZMa. Applying Lemma 15, we

recognize the k-th term in this product as PuM[vl,xl;...;kVk-I,Xk-l(Xvk = Xk) (note that the terms

vj (xj),J < k - 1 cancel out).

Proposition 7 also allows us to obtain upper and lower bounds on the marginal proba-

bilities:

Lemma 16. For every node v and xo E X

-a <,(xo) < PM(XV= XO)5 C ()

Proof. The proof follows from Proposition 7. We have for every x E X, node v and its

neighbors vl,... ,vm that fin 5 Ik=l1 fv,vk (X, Xk) cmfin. Applying this bound to the

numerator of (4.5) for x = x0 we obtain the required upper bound. Applying the same to

the denominator, we obtain the required lower bound. OI

We now provide sufficient conditions under which the construction of a computation tree

for computing approximately marginal probabilities PM(XV = x) as well as the partition

function ZM can be performed in polynomial time.

Similarly to the problem of coloring, we introduce I(.-) - a surrogate for computing

the marginal probabilities PuM(-). Consider a function 4IM(V, x, d) defined recursively for an

arbitrary instance of a MRF M = (G, X, 0, f), arbitrary node v, element x E X and a

non-negative integer d as follows.

* We set (M(v, x, 0) = 1. As in the case of coloring, it turns out that the initialization

values are not particularly important, due to the decay of correlations.

* For every node v with neighbors vl,... , vm, every x0 E X and d > 1

= d(xo) ZEl,...,XmEx Em-1 4M[V,x1;...;vk-,,xk-] (Vk. Xk, d - 1)fv,vk (X0 , Xk)(DM (v, Z0, d) = k=

E) x ¢,k(x) -Ex...,xmEX Ikm1 (lM[v,z1;...;vk-,xk-11](Vk, Xk, d - 1)fV,vk(X, Xk) k

(4.6)

where the sum Exj,...xmex = 1 when m = 0.

Assumptions (4.1) and (4.2) guarantee that D > 0.

We now describe our algorithm for approximately computing ZM. The algorithm is

parametrized by d. It is based on computing recursively the values of DM.

Algorithm ComputeZ

INPUT: A MRF instance M = (G, X, 4, f) and a positive integer d.

BEGIN

Set Z = 1,)M = M.

While G 0, fix an arbitrary node v E G and element x EX. Compute)Mg(v,x,d).

Set Z = 4'(v, x, d)Z.

Set M = Tv,x[lM], where the operator T was defined before Proposition 6.

END

OUTPUT: Z.

4.1.2 Complexity

We begin by analyzing the complexity of computing function 4.

Proposition 8. For every v E V, x E X, the function Q~M(v, x, d) can be computed in time

O(2daloglXln2). In particular when d = O(logn), and IXI, A = 0(1), the computation is

polynomial in n.

We note that the dependence on A is not as nice as in the case of the list-coloring

problem, as it appears as A not log A in the exponent. Thus we can no longer claim that

the computation time is 20(log2 n) in this case.

Proof. Let T(d) denote the complexity of computing function 4(-, d). Clearly, T(0) = 0(1).

We now express T(d) in terms of T(d - 1). Given a node v, in order to compute QM(v, x, d)

we identify the neighbors v,.. . , v of v. For every sequence Xzl,..., m E X and every

k = 1, 2, ... , m we compute 4 M[vl,xzl;...;vk-1 ,k-1](Vk, Xk, d - 1). The computation of each such

quantity is T(d - 1). We use the obtained values to compute DM(v, x, d) via (4.6). We also

need O(n2) time to "take care" of multiplying by fv,vk and by 0,. The overall computation

effort then satisfies

T(d) = O(IXI"T(d - 1) + n2).

Iterating over d we obtain T(d) = O(IXIdAn 2) = o(2dAloglxln2), and the first part is estab-

lished. When d = O(log n) and A, IXI are constants, we obtain T(d) = n- (1)

The following is then immediate.

Corollary 5. Suppose d = O(logn) and IXI, A = 0(1). Then ComputeZ is a polynomial

time algorithm.

4.1.3 Correlation decay analysis

We now establish a correlation decay result which is a key to proving our main result,

Theorem 7.

Theorem 8. Given an arbitrary MRF satisfying conditions (4.1),(4.2),(4.3), the following

holds for every node v and d > 1

max I logPM(X, = x) - log DM(v, x, d)
XEX

< (1 - 7) max PM[vl,x1;...;vk-,Xk-1 (XVk = y) - M[v1,x1;...;vk-l,xk-l](Vk, y, d - 1)

(4.7)

where vl, . . . , Vm are the neighbors of v.

We first show how this theorem implies our main algorithmic result.

Proof of Theorem 7. We claim that ComputeZ provides FPTAS for computing partition

function ZM when d = O(log n) under the setting of Theorem 7. We have already established

in Corollary 5 that the algorithm is polynomial time.

Consider any MRF instance M obtained during the computation of 4DM(-) as a part of

performing algorithm ComputeZ. Applying (4.4) and Lemma 16 we obtain that for every

node v in M and every x E X

•A 1 - -z 1 -Ad -1 -A(d+1) 1 _PM(X• = j) > C- C> c Cj F ic1xIX=)- f 2c c cO =c c .
Then applying the result of Theorem 8 d times and recalling '4I(v, x, 0) = 1, we obtain for

d = O(log n)

logI P•(X, = z)- log • (v, x,d)) (1- 7) ((d + 1)log cf + log IX + log c)

= (1 - 7)dO(dn log n)

1 1 O (n log2 n)
nO(log l-)

1

nO(1)

where the last step is obtained by selecting d = Clog n for sufficiently large constant C.

PM(XV 2- 1= exp(n (1)) - 1 = 1
Dm(v, x, d) no(1)

We conclude that 4M(v, x, d) provides an approximation of marginal probability PM(X, = x)

with an inverse polynomial error. The remainder of the proof is the same as for Theorem 3.1.

Proof of Theorem 8. Fix a node v and an element x0 E X. Let vl,..., Vm be neighbors of

v. When m = 0 we the left-hand side of (4.7) is zero. Thus assume m > 0. In order

to ease the exposition we introduce some notations. Set z = log PM(X, = xo), zx,,...,k

log PM[VI,Xl;---;Vk-1_,k-_l(Xvk = Xk). Similarly

i = log 4M(v, xo, d), x1y,,...,k = log 'M[v,,,;...;vk-,k](-1 (kk, d - 1). Also let z denote the

vector (z-,....,Xk), 1 < k < m, x,...,Xm E X and i denote the vector (•Xl,...,xk), 1 < k <

m, Xl,..., Xm E X. Both vectors have dimension l<k<m IXIm. Then we can rewrite (4.5)

as

,v(xo) x,...,XmEX 1m=l1 fV,Vk (Xo, k) exp(z,,...,xk)

z = log XEX V(x) E X,...,XmE k fI,k (X, Xk) exp(zx, ... ,k)'

and rewrite (4.6) as

= log (x) 'xl,...,XxmEx 1k=l fv,vk(o, Xk) exp(ix1,...,X)
XEX - , (x) Exl,...,xmEX 1m=1 fv,vk(x, Xk) exp(,x1,...,xk)

(4.9)

Introduce a function 9 defined on a vector w = (wX1,...,xk), 1 < k < m, xz,. .. m E X with

the same dimension El<k<m IXim as follows:

€5 (xo) Exl,...,XmEX H1 fv,vk (xo, Xk) exp(wxl,...,k)9(w) = log) ,...,) exp(zEX OV(X) Exj,...,XmEX 1k=1 fv,vk (X, Xk) exp(wzI,..., k)

which we rewrite as

log qO(xo) + log G1(w) - log G2(W)

where the definition of G, and G2 is immediate.

m

i (w) = E £1
xi,...,2,EX k=1

92 (w) =
2XEX

fVVk (O, Xk) exp(wxl,...,X,)

Xl,...,XmEX k=1
fv,vk (, Xk) exp(w ,...,Xk))

For convenience, let

D(v, xo, w) =
m

E f fvV(Xo, 'k)exp(w~ 1,...,
Xi,...,XmEX k=1

then

G1 (w) = D(v, xo, w)

2(w) = (v(x)D(v, o,))
zEX

(4.10)

We have z - i = g(z) - g(i). Thus establishing (4.7) reduces to showing

g(z) - g(i)| • (1 - -')Iz - z|Lo.

Applying Mean Value Theorem, there exists t E [0, 1] such that

z- = Vg(tz + (1 - t).i)T(z -)

further implying

z - •. <- |VG(tz + (1 - t).)IL, IIz - .)ILoo.

It then suffices to establish

jIVg(tz + (1 - t)II•)L , < 1 - .

In the following lemma we show that this bound holds for an arbitrary input vector w and

thus complete the proof of Theorem 8.

Lemma 17. For every vector w

I vg(w))L 1 < 1-

Proof. Fix an arbitrary sequence x° ,. .. , o E X and the corresponding variable w,. xo.

We have

09
awx·,Z. S 01 , .., 01 kO

-1 a!2

2 Wxo oX
1' kO

For convenience, let B = Hk=1 fv,vk (x, 4) exp(w,...,)

We have

-1 1

B Zk+÷, ... XmeX k=ko+l fv,vk (Xo, Xk) exp(wXo ... Zx, X2kO+1 k..Xk

Zxl,...,xmEX k=1 fv,vk(Xo, Xk) exp(wxl ...,xk)

Using fmin ý fv,v, (xo, xO) : Cf fmin, we obtain

G- 1
1

1 aWxo ... X
I' k0

ko=1 exp(w.°,...,x)) EZk+,,xmEX H =ko+1 exp(wxl,...,xk)
EzI,...,zmE m,=l exp(wx,l...,,)

< ca•
f

Similarly, we obtain

-1 G1 C-A.
I wxl,...,Xk f

Using again fmin 5 fv,,(x, y) 5 Cffmin we also obtain

1'"' k

ZxEX q,(x)B _Xk+1,...,XmEX Hk=ko+l fv,vk(X, Xk) exp(wx °,...X , kO+l1...,Xk)

EZEX q,,(x) l,...,xmEX Im= fv,k (X, Xk) exp(wxl... Xk)

Ex ,() ko= exkp(wo ... ,)) EXk+,---..,xmEX k=ko+l exp(w.-,...,k)
f M Hx + ewx

SEXV(x)) Exl,...,XmEX I 1 ex•p(w,,Zk

(=1 exp(wx,...,••)) Xk+1,...,m EX =ko+1 exp(wx•,...,ýk
SXl,...,x, x m exp(wxl,--,Zk)

ScSimilarly,

Similarly,

1 092 > c-A
29wo .0o -

Since the dimension of the argument w is E1<k<m Xlm < AlIXIIA, then we conclude

IIVG(w)IIL| < (cA - c-A)AlXlIA 1 - 7.

This concludes the proof.

4.1.4 Example: Potts model

One of the most widely studied objects in the statistical physics is q-state Potts model. It

is described in the terminology of MRF as follows. Given a graph G we set 0, = 1 for all

nodes v. X = {1, 2,..., q}. A parameter 3 called inverse temperature is fixed. The coupling

functions f are set as f,,,(x, y) = exp(31{x = y}) for all nodes u, v and all elements x, y E X.

The case 3 > 0 corresponds to the ferromagnetic Potts model. In this case the distribution

PM(-) "favors" assignments which select the same element along the edges. The case 3 < 0

corresponds to the anti-ferromagnetic Potts model, and in this case the distribution favors

assignments with different elements along the edges. The extreme case 3 = -oo corresponds

to the usual coloring problem, where monochromatic coloring are simply forbidden. The

special case q = 2 is called Ising model - one of the cornerstone models of the statistical

physics.

It is immediate that conditions (4.1) and (4.2) are satisfied by this model provided 1/1 <

oo. Thus an immediate corollary of Theorem 7 is the following algorithmic result.

Corollary 6. There exists a deterministic FPTAS for computing a partition function for a

family of Potts model (G, q, 3) with constant constant degree A, constant number of colors

q, and satisfying

(eWA - e- A)AqA < 1.

Observe that for large A, the largest inverse temperature / satisfying this condition

behaves like O(-). We believe that this is an overly conservative estimate. We conjecture

that in fact the correlation decay property can be established in the regime

3- = O(), (4.11)

leading to a deterministic FPTAS.

4.2 Conclusions

We have extended our approach from Chapter 3 to constructing deterministic approximation

algorithm for computing a partition function of a Markov random field satisfying certain

conditions.

We conjecture that the polynomial time algorithms for computing partition function

of a MRF can be constructed under weaker an assumption than (4.3). Specifically, we

conjecture that for the case of Potts model, the critical inverse temperature P* under which

the correlation decay can be established on a computation tree behaves like (4.11).

Chapter 5

Counting matchings in a graph

The work in this chapter is joint with Mohsen Bayati, Chandra Neir, and Prasad Tetali.

This chapter focuses on the problem of counting the number of matchings in a graph and

has the following structure. The definitions and the main result Theorem 9 are presented in

Section 5.1. The correlation decay analysis is the subject of Section 5.2. The approximate

counting algorithm and the complexity analysis is presented in Section 5.3. Some concluding

remarks and further open questions are presented in Section 5.4.

5.1 Definitions, preliminaries and the main result

We consider a simple labeled undirected graph G with n vertices. The vertex set is denoted

by V = {vi,..., v4}. E denotes the edge set. N(v, G) C V denotes the set of neighbors of

v We will also use N(v), when the underlying graph G is unambiguous. The degree of the

graph is A max, IN(v, G) . We abuse notations by letting G \ {v} denote a subgraph of

G induced by nodes V \ {v}. A matching is a subset M C E such that no two edges in M

share a vertex. We denote by M = M(G) the set of all matchings of G.

Given a fixed parameter A > 0, called the activity, a natural (Gibbs) probability distri-

bution on the set M of matchings is defined as:

AIMI
IPG(M) = 'Z(G)

where the normalizing constant Z(G)' is called the partition function corresponding to A,
and is expressed as

Z(G) = AIMI.
MEM

When A = 1, Z(G) is simply the number of partial matchings IMI. Our goal is constructing

an algorithm which computes Z(G) approximately. The instance size of the problem is

O(max(VI, IEI, I log Af)).

For convenience, we restate here the definition of a FPTAS.

Definition 5. An approximation algorithm A is a Fully Polynomial Time Approximation

Scheme (FPTAS) for computing Z(G) if, given an arbitrary E > 0, it produces a value Z

satisfying

Z
exp(-c) < < exp(E),

in time which is polynomial in 1/e and size instance.

We now state our main result. Here and throughout log denotes natural logarithm.

Theorem 9. There exists a deterministic algorithm which provides FPTAS for computing

Z(G) corresponding to a constant activity A > 0 for any graph, whose degree is bounded by

a constant A. The above algorithm has complexity O((f)'1oga+'), where n = -2/ log (1 -

Thus, while the running time of the algorithm depends polynomially on 1/e (hence Fully

Polynomial approximation scheme) the degree of the polynomial depends on both A and A.

Additionally, we will show that the algorithm of Theorem 9 has subexponential complex-

ity when the graph is general (non-constant degree).

Corollary 7. The complexity of the algorithm of Theorem 9 is exp(O(vlog2 n)) for general

graphs and constant A > 0.

1For ease of notation we suppress the dependence of Z(G) on A.

We now introduce an identity which appears in various forms in the context of Markov

chain sampling method as well. The identity is also the essence of the cavity method in

statistical physics. It shows that the problem of computing the partition function can be

reduced to the problem of computing certain marginal probabilities. Problems admitting

such reduction are called self reducible.

Denote by M a random matching selected according to the Gibbs measure PG. Abusing

notation slightly, we write v E M to say that matching M contains an edge incident to v.

Proposition 9. Let Gk = G \ {vI,... , Vk-l} with G0 = G. Then

Z(G) =1/ J]PGk(Vk M).
1<k<lVI

Proof. Observe that for every graph G and vertex v E G

Z(G \ {v})
PG(v M) = \0(5.1)Z(G)

Applying this identity recursively to vk, Gk, and using the convention that the partition

function for the graph with no edges equals 1, we obtain the result. EO

The following corollary is a straightforward application of Proposition 9 and therefore

we shall focus our attention on constructing an algorithm for computing an approximation

of IPG(v U M).

Corollary 8. Given any e > 0, if there exists a fully polynomial time algorithm .A, which

on input (G, v), computes a value p(v) satisfying

exp(-) <) exp(), (5.2)
n -IPG(v M) n

then one immediately obtains a fully polynomial time approximation algorithm for Z(G).

5.2 Basic recursion and correlation decay analysis

The following recursion is similar to the one obtained by Godsil in [God81] and Heilmand

and Lieb [OE72]. It was also used by Kahn and Kim [KK98] for the analysis of random

matchings on regular large degree graphs.

Proposition 10. The following holds for every vertex v:

IPG(v M) = (5.3)
1 + A EuEN(v,G) PG\{v} (U M)

Proof. We have

Z(G) =
MEM(G):vxM

AIMI+ E):
UEN(v,G) MeM(G):(v,u)EM

Observe that the set of all matchings M such that v ý M is the set of all matchings in

G \ {v}. Also for every matching M containing (v, u), M \ {(v, u)} induces a matching in

the graph G \ {v, u}. Conversely, for every matching M in G \ {v, u}, M U {(v, u)} creates

a matching in G containing the edge (v, u). Thus we can rewrite (5.4) as

Z(G) = Z(G \ {vj) + AZ(G \ {v, u}).
uEN(v,G)

Dividing both parts by Z(G \ {v}) and using the identity (5.1) we obtain the result. O]

Definition 6. For every induced subgraph H of the graph G every vertex v E H and every

t E Z+ let IDH(v, t) be defined inductively as follows:

(H(v, 0) = 1,

(1 + A UEN(v,H) HVJ (U, t - 1)),

for all H, v;

t>1.

While we have introduced the values '1 H(v, t) for potentially exponentially many sub-

graphs of G, it is only a small family of subgraphs of G for which the value of 4P will be

relevant to us. The quantity)H(v, t) will serve as an approximation of PH(v 0 M). The

essence of this approximation is described in the following result which is the basis of our

algorithm.

Theorem 10 (Correlation Decay). The following holds for every vertex v and every

AIMI. (5.4)

QH(v, t) = (5.5)

positive even value t:

10g PG (v M) -lOg(v G (i) 1 - (+))log(1 + AA).

Proof. Fix a vertex v E G, and let N(v, G) = {ul, ... , um}, N(ui, G\{v}) = {wl , ... , wi) .

We introduce the following shorthand notations, with x's representing the true probabilities

(of certain vertices not being in random matchings) and y's representing the corresponding

approximations:

x = log IPG(v M), xi = log PG\{v}(ui M), () = log PG\{v,ui}(wJi) 0 M),

y = log1 G(v t), ,i = log (G\{v(Ui, t - 1), i))= 10og iG\{v,u}(wi), t -2),

(5.6)
(5.7)

for i= 1,...,m, j= 1,...,mi.

Let M = •~,i mi, = (z1) .(1) (i) m)z,) Let f : [0, 1]M -+ [0, 1] be given

as

f(i = log (1 + A E 1
i=1 1 + Aj ez(i

Then we can rewrite (5.3) and (5.5) as x = -f(Y), y = -f(y). We consider g(a) = f(ay+(1-

a)y) as a function of one-dimensional parameter a E [0, 1] and fixed vectors 4, Y. Applying

the mean value theorem, there exists a E [0, 1] such that for z, = ac + (1 - a)',

(a)
IX - Yj = jJf (') -(' - Y - Ilf (') 11L, 11 ' - Y"ILw) (5.8)

where (a) follows from I aibi1 <5 (E jlail) max Ib1l = |IlallL IbllL-. It is easy to see that

l|Vf(Z)IIL| 1+AZC:

2
1 1

+ Az (+) i=--1 1+ A eJ z e
1+i- i en (j

IlVf(~1IL, 1 -
2

(V1 + AA + 1)

Lemma 18. For every ',

mi
ezi).

j=1

Proof. Define A1 - 1 + A E"i e zA . The Li-norm can be re-written, in terms of Ai as

Mm 11 A(Ai- 1) _1- A i1
IIVf(MIIL = 1+A = A? 1+A-A=1 =1

= 1 2 -- = 1 "

It is not difficult to see that the expression __ is minimized, for 0 < 1/Ai < 00,

when 1/Ai = . To show this, first observe by taking partial derivatives that the

minimum occurs when all of Ai are equal. Then the solution for optimal Ai reduces to a

quadratic equation. Substituting for the minimum value, one obtains

m 1
1+A i=1 A 2 2

IVf(z•L = 1- m 11- <1-
1 + AEi (/ + Am + 1) (1- /1 + AA + 1)

Applying Lemma 18 to (5.8) we obtain

log PG (V M) - iOg G (V, 0)1

_ 1 - (2+ 1) max log PG\{v,U(wj) M) - log cG\{v,Uiw} , tI - 2).

Iterating this bound t/2 times we obtain that logIG(v ý M) - 10g G (V, t) is at most

(1- 2)t/2 times maxEH, log PH(U ý M)- log Da(u, 0) where thre the maximum is over

all subgraph/vertex pairs (H C G, u E H). Observe from (5.3) that

1
- 1+AA

Applying this bound and the fact (I(u, 0) = 1, maxH, I log IPH(u M) - log (H(u, 0) is at

most log(1 + AA). O

Remark : In the proof below we analyzed two steps of the recursions (5.3) and (5.5).

This leads to a correlation decay rate - (1- 1). We could instead use a one-step analysis,
but this would give us a decay rate only e (1 - ±). While this would not make a big

difference in the case A, A = 0(1), it does make a difference in the general case, since A

could be as large as n - 1. The case A = O(n½) will be used in Chapter 6 for constructing

an approximation algorithm for computing a permanent. It also seems that 3-step analysis

would not buy us better correlation decay as the rate - (1- 1) is tight, as can be checked

on a regular tree. This observation is also implicit in [KK98].

5.3 Algorithm

Our algorithm is based on computing the values 4 G (v, t). In our analysis of algorithm

complexity, we assume that each arithmetic operation takes one unit of time. This can

be done since arithmetic operations introduce at most a polynomial time overhead in the

computation.

Lemma 19. The values G (v, t) can be computed in time O(At). In particular when t =

O(log n) and A = 0(1), (G(v, t) can be computed in polynomial time.

Proof. The proof follows immediately from recursion (5.5). O

Based on this lemma, we propose the following algorithm for estimating the partition

function Z(G).

Algorithm CountMATCHINGS

INPUT: A graph/activity pair (G,A) and a positive integer t.

BEGIN

Set Z= 1, H = G.

While H 0•, find an arbitrary node vE H. Compute (ID(v,t).

Set Z= Z H = H\

END

OUTPUT: Z.

As a final step we show that 4D can be used to approximate the marginal probabilities

PG(v ý M) with polynomial accuracy.

Lemma 20. Let 6 = -log (- (A If t = 2 [(logn + loglog(1 + AA) - log)/6],
then

e (v< < eM)

Proof. Theorem 10 implies

lo IG(v t) 1 - + log(1 + A)

The result then follows. O

Proof of Theorem 9. First we assume the case of bounded degree graph and constant activ-

ity: A, A = O(1). The bound on t given by Lemma 20 becomes in this case t = O(log n). The

algorithm providing FPTAS is CountMATCHINGS, with input G, A, and t = O(log n) as in

Lemma 20. We can combine Lemma 19, Lemma 20 and Corollary 8 and observe that the com-

plexity of the algorithm is bounded by O(nAt) where t = 2 [(log n+log log(1 +AA)-log E)/6].

This gives the desired FPTAS with the complexity bounded as stated in the theorem.

In the general case we have for 6 defined in Lemma 20 that 6- 1 = O(V5A). Due to
our assumption A = 0(n), this gives t = O(log 2) = O(VAlog l). Thus again applying

Lemma 19, the complexity of the algorithm CountMATCHINGS is

O(nA t) = O(nt) = exp(O(AvAlog 2 n)),

where A = O(n) is used. (Here we ignore the explicit dependence on E but it is easy to see

that the complexity depends polynomially on 1.) The special case corresponding to counting

matchings A = 1 leads to an upper bound exp(O(v/-log 2 n)). l

5.4 Conclusions

We have constructed a deterministic algorithm for counting approximately the number of
matchings of a given graph. The algorithm runs in polynomial time for the class of bounded

degree graphs, and in subexponential time exp(O(QVJlog2 n)) for the class of all graphs,
where n is the number of nodes.

A natural open question is whether there is a FPTAS for counting matchings in graphs

of unbounded degrees? There seem to be some fundamental limitations of the approach

proposed in this thesis - the correlation decay rate corresponding to the case of matchings

seems to be of order 1 - O(!), and thus we speculate that the improvement should come

along some combinatorial, (rather than statistical physics), type arguments. In general, it

is of interest to see to what extent the correlation decay approach can be used for solving

approximately other counting problems for which the MCMC method has been successful.

This line of investigation might also bring us a step closer to understanding the extent to

which randomized algorithms are more powerful than deterministic algorithms.

100

Chapter 6

Computing the Permanent of a matrix

The chapter contains our contribution to the problem of computing a permanent of a 0, 1

matrix, and has the following structure. Definitions, preliminaries and the statements of

the main results are subject of the following section. Section 6.2 is devoted to construct-

ing approximation algorithm for the case when the underlying graph is a constant degree

expander. The general case is considered in Section 6.3. We conclude with some possible

further directions in Section 6.4.

6.1 Preliminaries and the main result

Consider a simple undirected n by n bi-partite graph G with the node set V = V1 U V2 ,

lV1/ = |V21 = n. Let E be the set of edges of the graph. N(v, G) C V denotes the set of

neighbors of v E V and A(v) = IN(v, G) denotes the degree of the node v. The degree of

the graph is A - max,•v A(v). Given a set of nodes A, we denote by N(A) or specifically

by N(A, G) the set of neighbors of A (in G). Given a > 0, a graph G is defined to be

an expander or specifically a-expander if for every set of nodes A C Vi, i = 1, 2 such that

IAI < n/2, the inequality IN(A)I > (1 + a)IAI holds. We also define

A |N(A)|a(G) = max N(A) 1
A JAl

101

to be the expansion of the graph G, where the maximum is over all subsets A C V1, i = 1, 2

with IAI < n/2. Clearly, G is a-expander if its expansion is at least a.

A matching is a subset M c E such that no two edges in M share a node. For every

k < n let M(k) be the number of size k matchings in G. Specifically, M(n) is the number

of full matchings.

Given a graph G let A = (aij) be the corresponding adjacency matrix. The rows and

columns of A are indexed by nodes of V1 and V2 respectively, and aij = 1 if (vi, vj) E E and

aij = 0 otherwise. It is immediate that M(n) = Perm(A).

A parameter A > 0 is fixed and is called the activity. The partition function corresponding

to A is defined as

Z(A,G)= AIMI = A kM(k).

M O<k<n

This object is also known as matching polynomial [God81]. A partition function is an

important object in statistical physics. The case of matching is usually called monomer-

dimer model in the statistical physics literature.

For convenience, we restate here the definition of a FPTAS.

Definition 7. An approximation algorithm A is defined to be a Fully Polynomial Time

Approximation Scheme (FPTAS) for a computing Z(A, G) if given an arbitrary J > 0 it

produces a value 2 satisfying

1 Z
1+6 Z(A, G)

in time which is polynomial in n and J. An approximation algorithm is defined to be

Polynomial Time Approximation Scheme (PTAS) if the computation time is polynomial in

n, but not necessarily in 1

The following result was established in Chapter 5

Theorem 11. There exist a deterministic algorithm which provides a FPTAS for comput-

ing Z(A, G) for an arbitrary graph/activity pair (G, A) when A and A are constants. The

complexity of the same algorithm is exp(O(/XAlog A log n)) for general A and A.

102

The case A = 1 corresponds to counting the number of partial matchings of a graph.

In this chapter we use the algorithm underlying Theorem 11 as a subroutine to devise an

approximation algorithm for computing a permanent. For this purpose we will be making A

to be appropriately large. Throughout this chapter we assume A > 10.

We now state the two main results of this chapter. In the next and the following re-

sults the notion of (1 + e)n multiplicative approximation factor of Perm(G) corresponds to

obtaining a value 2 satisfying (1 + e)-n < 2 < (1 + E).

Theorem 12. Let G be an n by n bi-partite a-expander and let e > 0. There exist a

deterministic (1 + E)n approximation algorithm for computing Perm(G) with running time

n(o(~°logA)). (6.1)

Specifically, the running time is polynomial (PTAS) in n whenever A, a are constants.

Thus we construct a (1 + e)n polynomial time approximation algorithm when the un-

derlying graph is a constant degree expander. Our algorithm corresponding to the second

part of the theorem, while polynomial, is not strongly polynomial, as the dependence of the

running time on the approximation parameter E is of the form no((¼)1). While our approxi-

mation factor (1 + E)" is a far cry from PTAS (namely 1 + e approximation factor), it is still

a significant improvement over en factor constructed in [LSWOO].

Our second result does not require any restrictions on the underlying graph.

Theorem 13. There exist a deterministic (1 + e)n approximation algorithm for computing

Perm(G) of an arbitrary n by n bi-partite graph G which runs in time exp(O(E-cn log3 n)).

Thus, similarly to [JV96], our algorithm provides a mildly exponential algorithm for

approximating a permanent of a graph. While the approximation factor (1 + E)n is weaker

than the one of [JV96], our algorithm is deterministic.

103

6.2 Constant degree expanders

Proof of Theorem 12 is given in this section. We begin by establishing some preliminary

results. We assume without the loss of generality that M(n) > 1. Consider an arbitrary k

matching M between sets A1 C V1, A 2 C V2 , All = A2 1 = k. A path v l ,v 2, ... ,V 2r is defined

to be an alternating path wrt M if vl E Vi \A1, v 2r E V2 \A 2 , if (v21, v2 1+1) E M, 1 < 1 < r - 1

and (v21- 1, v21) ' M, 1 < 1 < r. Observe that given M and an alternating path P, one can

construct a k + 1 matching, by subtracting from M all the edges (v21, v21+1), 1 < 1 < r and

adding all the edges (v21- 1, v21), 1 1 < r - 1. The length of this alternating path is defined

to be 2r - 1.

Lemma 21. Let M be a k matching between A1 and A 2 for k < n - 1. For every set

L C V1 \ A1 with ILI > (n - k)/2 there exists an alternating path P with end points in L and

V2 \ A 2 and with length at most

O(log(-)log-l(1 + a)). (6.2)

Proof. The proof is similar to the argument of Lemma 2 [JV96]. Let R = V2 \ A 2 . Let L, be

the set of nodes in V2 reachable from L en route of alternating paths with length at most 2r.

Let ro be a minimum r satisfying (1+a)r(n- k)/2 > n. Note ro = O log() log•(1+a)).
n-k.

Since ILI > (n - k)/2, then 1(ro) - min((1 + a)roj°L, 1 + 1) = E + 1. For every r < ro,

by the expansion property either IL, > min((1 + a) r |LI, ! + 1), or Lr, nR 0 for some

r' < r. In the second case we found an alternating path with length < 1(ro). In the first

case we have iLroI > n/2. We now claim that for every r > ro either Lr, V2 \ A 2 ý 0
or |V2 \ LrI (1+o)r-r (n/2). Indeed, let L' C V1 be the set of nodes matched to Lr. In

particular ILr,I > n/2. Since ILr+11 = IN(Lr,)I > n/2, then

IV2 \L = IVi \ L,I > IN(V2 \ Lr+)I > (1 + a)V 2 \ L+1,

and the assertion is established by induction. For r > 2ro we obtain (1+)r-ro (n/2) < n - k

and thus we must have L4 n V2 \ A 2 # 0. We established that for some r < 2ro there

exists an alternating path with end points in L and V2 \ A 2 . The length of this path is

O(ro) = O(log(') log-'(1 + a)). This completes the proof. EO

104

Lemma 22. For every k < n - 1

M(k +1) n- r -k

As a result

M(k) (2en O (n-k) log-1(1+a) log
M(n) - / (6.4)

Remark : Before we prove the lemma, we compare this result with a similar result

established in [JV96], namely, Lemma 2. It is established there that M(n - 1)/M(n) =

O(exp(log 2 n)) (treating a as a constant). One could extend their argument to show that

M(k)/M(k + 1) = exp(O(log n log(n/(n - k)))). Applying this bound straightforwardly, we

obtain M(k)/M(n) = exp(O(n log2 n)) when n - k = Q(n). Unfortunately, this bound grows

superexponentially. This is not good enough, as shall shortly see. We need to obtain a bound

which grows at most exponentially in n when n - k = Q(n), and the bound (6.4) achieves

just that. This bound is achieved in our Lemma 22 using a more careful counting argument.

Proof. Fix an arbitrary k matching M between A1 C V1 and A 2 C V2. We claim that there

exist at least (n - k)/2 k + 1-matchings obtained from M via an alternating path with

length at most the value given by (6.2). Indeed, consider the set of all nodes v in V1 \ A,

such that the shortest alternating path starting from v is larger than the required bound.

By Lemma 21 this set contains less than (n - k)/2 nodes and the assertion follows.

Now consider the following bi-partite graph. The nodes on the left (right) are all k

(k + 1)-matchings. We put an edge between two matchings M, M' if M' is obtained from M

via an alternating path with length bounded by the expression in (6.2). The total number of

edges in this graphs is at least M(k)(n - k)/2 by our observation above. For every matching

M' on the right side of the graph the number of edges pointing to it is at most the number of

alternating paths with length at most (6.2) which result in M'. For every possible starting

node of an alternating path, the number of such alternating paths is at most

O log(a•) log-(1+a))

105

The number of starting nodes is bounded by n. Then the total number of edges in this graph

is at most M(k + 1)nA l g -k (+)) We conclude that

M(k + 1)nA° \(o(' - k) l l +)) M(k)(n - k)/2.

The bounds (6.3) then follows. From this bound we also obtain

(2n)n-k)
\(n - k)!

log - 1(1+a) log A) ((2en)n - k o (log-l(l+a)logA)

(n - k)n-k)

where the Stirling's approximation was used in the equality.

(6.4).

Corollary 9. The following holds

1< Z(AG) < exp(O(nA-'log-1 (1
A" Perm(G)

This is the required bound

+ a)log A)). (6.5)

Proof. The inequality Z(A, G) > An Perm(G) is immediate. We focus on the second inequal-

ity in (6.5). We need to analyze the ratio

AkM(k)
AnM(n)

We set cn . log-l(1 + a) log A for simplicity. Applying the second part of Lemma 22

(6.6)

A-(n-k) M(k)
M(n)

exp (O(cn(n- k)(log n- log(n- k)- log
A))

Consider the problem of maximizing

A - -

g(x) -x log n - x log x - x log 2-2e
in the range x E [1, n]. The boundary cases x = 1 and x = n give, respectively, the values

log(2en/A), -n log(A/2e). The second quantity is negative when A > 2e (recall our assump-

tion A > 10). To find another candidate for the largest value, we take the derivative with

106

M(k)

M(n)

A-(n-k) M(k)
M(n)"

respect to x and equating it to zero we obtain

log n - log x - log - = 0,
2

giving x = 2n/A. Evaluating g(x) at this value simplifies to 2n/A and this gives the largest

value of g when n is larger than some A dependent constant. We conclude that the left-hand

side of (6.6) is at most exp(O(9)), implying

< nexp(O()) = exp(O(+ log n)) = exp(O()).
An Perm(G) A A A

Proof of Theorem 12. Fix an arbitrary constant e > 0. We select the smallest A so that

exp(O(A- 1 log-'(1 + a) log A)) < 1 + e. It is clear that A = O(e-'a- log A). We compute

an E-approximation Z of Z(A, G) using the algorithm underlying Theorem 11 for computing

Z(A, G). By Corollary 9, it satisfies

(1 - E) < AP < (1 + e)n +1A" Perm(G)

Then Z/AX provides the required approximation. The complexity of this algorithm is

exp(O (vf/A log A log n)

which is (6.1) for our choice of A, and the first part of the theorem is established.

For the second part we observe that A = O(ela - 1 log A) is a constant whenever a and

A are constants. We recall from Theorem 11 that the algorithm for computing Z(A, G) is

polynomial time, under these assumptions. O

6.3 General graphs

Proof of Theorem 13. Our approach uses Jerrum-Vazirani expander decomposition approach

[JV96]. The idea is to decompose the underlying graph into a collection of subgraphs with

107

a suitable expansion properties and apply an algorithm for computing the permanent recur-

sively. In [JV96] the subroutine used is based on the algorithm relying on rapidly mixing

Markov chain. Here we use the deterministic algorithm constructed in the proof of Theo-

rem 12.

The following result is established in [JV96] (Lemma 4). There exists and algorithm,
called

TestExpansion which on input G, a either identifies that G is an a-expander, or identifies

a set A C V1, IAI 5 n/2 such that N(A) < (1 + 2a)JAI. The running time of the algorithm

is exp(O(an log n)).

Given an arbitrary set A C V, it is straightforward to observe that

Perm(G) = E Perm(A, B) Perm(Ac, Bc) (6.7)
BCN(A),jIBI=IA

where AC = Vi \ A, BC = V2 \ B and Perm(A, B) is the permanent of the subgraph induced

by A and B. Based on this observation we propose the following recursive algorithm for

computing Perm(G). We suppose that we have an algorithm Ar which computes (1 +

)'r factor approximation of a permanent of any r by r bipartite graph in time g(r), for

every r < n - 1. We use it to construct An as follows. Set a = n- 1/3 . Run algorithm

TestExpansion on G. The running time is exp(O(ns log n)). If the algorithm returns no

set A, then the underlying graph is an a-expander and we use algorithm of Theorem 12 to

obtain an (1 +e) n approximation of Perm(G). Using a bound A < n, the running time of this

algorithm is exp(O(V/-lnn log3 n)) = exp(O(c ni log3 n)), and the overall running time

is exp(O(n3 log n)) + exp(O(cni log3 n)) = exp(O(cein' log3 n)). Let co be the constant

hidden in O(-). From now on, treating e as constant, we hide c- in the O(.) term. In the

end we observe that the dependence of the running time on e is of the form exp(O(c-1)).

Otherwise the algorithm TestExpansion identifies a set A with IN(A)I 5 (1+2a)IAI. We

estimate Perm(A, B) and Perm(Al, BC) using algorithm Ar with r = IAI, IACI respectively.

Then we estimate Perm(G) using the expression (6.7). For every product Perm(A, B) Perm(Ac, BC)

our approximation factor is (1 + e)IAI(l + e)IACI = (1 + C)n by the recursive assumption.

Now we obtain an upper bound on g(n) and specifically show that it is exp(O(n3 log3 n)).

Let c > max(co, 8). By the recursive assumption g(r) 5 exp(cr3 log3 r)), r < n- 1. The

108

function g satisfies the following bound

g(n) max (exp(conw log3 n), max (min(n, r(l + 2a)))(g(r) + g(n-r)))
1<r<n/2 r

Here the term (min(n,r(1+2a))) comes from performing the computation over all subsets B of

N(A) with size IBI = IAI. We have

min(n, r(1 + 2a))) < (min(n, r(1 + 2a))min(nr(1+2a))-r

n 2ar =exp(2n-r log n)
2: exp(ns log n).

Now, by the recursive assumption we have for r < n/2 that g(r) 5 exp(cr3 log 3 r)) <

exp((3/4)cn2 log 3 n)), which gives

n2arg(r) 5 exp((7/8)cn log3 n)),

since 1 + (3/4)c < c + (3/4)c = (7/8)c. As for g(n - r), we have for sufficiently large n using

(6.9)

n2ar g(n - r) < exp(2n-3r log n) exp(c(n - r)3 log3 (n - r))

< exp(2n-3r log n) exp(c(n - r) log 3 n)
(a) 2 lg3
< exp(2n-1r log n) exp(cn logn - (cr/2)n- log n)
(b) 2 3
) exp(cnN log3 n - 2n-)

S(1 - n A) exp(cnu log" n),

where in (a) we use (n - r)2 < ni - n- (obtained, for example, using Taylor's ex-

pansion around ni); and in (b) we use r > 1 and c > 8. Using exp((7/8)cn log3 n)) <

109

(6.8)

We have

(6.9)

(6.10)

n-9 exp(cns log3 n) for large n, we obtain that for every 1 < r < n - 1

n2ar(g(r) + g(n - r)) 5 exp(cn log 3 n).

Combining with (6.8) we obtain the required bound g(n) • exp(cn- log3 n). O

6.4 Conclusions

We proposed a new deterministic approximation algorithm for computing a permanent of an

n by n 0, 1 matrix. Our algorithm provides a multiplicative approximation factor (1 + e)n

and runs in polynomial time for a matrix corresponding to a constant degree expander, and

in time exp(O(n2 log3)) for an arbitrary matrix. It is natural to try to extend our results

in several directions. One possibility is lifting 0, 1 requirement. This entails extending the

result of Chapter 5 to the case of weighted graphs. It is reasonable to expect that for some

special cases such an approach will work. In this case one can try to extend the results of

the present chapter to the case of general matrix entries.

A second interesting direction is utilizing the ideas in [JSV04], developed in the Markov

chain setting, as a possibility of getting stronger deterministic approximation algorithms

for computing a permanent. The technique developed in [JSV04] allow one to deal with the

case when the ratio M(n- 1)/M(n) is exponentially large. Since obtaining amenable bounds

on the ratios M(k)/M(n) was required for our algorithms to work, this might be indeed a

fruitful direction for further research.

110

Bibliography

[AAF+96]

[AKOR98]

M. Andrews, B. Awerbuch, A. Fernandez, Jon Kleinberg, T. Leighton, and

Z. Liu, Universal stability results for greedy contention-resolution protocols, Proc.

27th IEEE Symposium on Foundations of Computer Science (1996), 380-389.

W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosen, Adaptive packet routing

for bursty adversarial traffic, Proc. 30th Ann. ACM Symposium on the Theory

of Computing (1998).

[AndOO] M. Andrews, Instability of FIFO in session-oriented networks, Proc. 11th ACM-

SIAM Symposium on Discrete Algorithms (2000).

[AZ00] M. Andrews and L. Zhang, The effects of temporary sessions on network perfor-

mance, Proc. llth ACM-SIAM Symposium on Discrete Algorithms (2000).

[BBK+01] V. D. Blondel, O. Bournez, P. Koiran, C. H. Papadimitriou, and J. N. Tsit-

siklis, Deciding stability and mortality of piecewise affine systems, Theoretical

Computer Science 225 (2001), no. 1-2, 687-696.

[BGO3] R. Bhattacharjee and A. Goel, Instability of FIFO at arbitrarily low rates in

the adversarial queueing model, Proc. 44th IEEE Symposium on Foundations of

Computer Science, 2003.

[BGO6] A. Bandyopadhyay and D. Gamarnik, Counting without sampling. New algo-

rithms for enumeration problems using statistical physics., Proceedings of 17th

ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.

[BGT96] D. Bertsimas, D. Gamarnik, and J. Tsitsiklis, Stability conditions for multiclass

fluid queueing networks, IEEE Trans. Automat. Control 41 (1996), 1618-1631.

111

[BGT01] , Performance of multiclass Markovian queueing networks via piecewise

linear Lyapunov functions, Ann. of Appl. Prob. 11 (2001), no. 4, 1384-1428.

[BKMP01] N. Berger, C. Kenyon, E. Mossel, and Y. Peres, Glauber dynamics on trees and

hyperbolic graphs, Proc. 42nd IEEE Symposium on Foundations of Computer

Science (2001).

[BKR+01] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Williamson, Adver-

sarial queueing theory, Journal of ACM 48 (2001), 13-38.

[BM01] T. Bonald and L. Massoulie, Impact of fairness on internet performance, Pro-

ceedings of ACM Sigmetrics, 2001.

[BN06] M. Bayati and C. Nair, A rigorous proof of cavity method for counting matchings,

Annual Allerton Conference on Communication, Control and Computing, 2006.

[BNM99] D. Bertsimas and J. Nino-Mora, Optimization of multiclass queueing networks

with changeover times via the achievable region method: Part I, the single-station

case, Mathematics of Operations Research 24 (1999), 306-330.

[BPT94] D. Bertsimas, I. Paschalidis, and J. Tsitsiklis, Optimization of multiclass queue-

ing networks: Polyhedral and nonlinear characterization of achievable perfor-

mance, The Annals of Applied Probability 4 (1994), 43-75.

[Bra94] M. Bramson, Instability of FIFO queueing networks, Ann. Appl. Probab. 2

(1994), 414-431.

[Bra99] , A stable queueing network with unstable fluid model, Ann. Appl. Probab.

9 (1999), no. 3, 818-853.

[Bra01l] M. Bramson, Stability of earliest-due-date first-served queueing networks, Queue-

ing Syst. 39 (2001), no. 1, 79-102.

[Bra05] M. Bramson, Stability of networks for max-min fair routing, Presentation at the

13th INFORMS Applied Probability Conference (2005).

[BT00a] V. D. Blondel and J. N. Tsitsiklis, The boundedness of all products of a pair of

matrices is undecidable, Systems and control letters 41 (2000), no. 2, 135-140.

112

[BT00b] , A survey of computational complexity results in systems and control,

Automatica 36 (2000), no. 9, 1249-1274.

[BW02] G. Brightwell and P. Winkler, Random colorings of a Cayley tree, in Contem-

porary Combinatorics, B. Bollobas, ed., Bolyai Society Mathematical Studies,

2002, pp. 247-276.

[BW04] , Graph homomorphisms and long range action, in Graphs, Morphisms

and Statistical Physics (Nesetril and Winkler eds.), DIMACS series in discrete

mathematics and computer science, 2004, pp. 29-47.

[CST] M. Chiang, D. Shah, and A. Tang, Stochastic stability under network utility

maximization: General file size distribution, Preprint.

[CY01] H. Chen and D. Yao, Fundamentals of queueing networks: Performance, asymp-

totics and optimization, Springer-Verlag, 2001.

[Dai95] J. G. Dai, On the positive Harris recurrence for multiclass queueing networks: A

unified approach via fluid models, Ann. Appl. Probab. 5 (1995), 49-77.

[Dai96] , A fluid-limit model criterion for instability of multiclass queueing net-

works, Ann. Appl. Probab 6 (1996), 751-757.

[DFHV04] M. Dyer, A. Frieze, T. Hayes, and E. Vigoda, Randomly coloring constant degree

graphs, in Proceedings of 45th IEEE Symposium on Foundations of Computer

Science, 2004.

[DHV99] J. G. Dai, J. J. Hasenbein, and J. H. Vande Vate, Stability of a three-station

fluid network, Queueing Systems 33 (1999), 293-325.

[DM95] D. D. Down and S. P. Meyn, Stability of acyclic multiclass queueing networks,
IEEE Trans. Automat. Control 40 (1995), no. 5, 916-920.

[DM97] , Piecewise linear test functions for stability and instability of queueing

networks, Queueing Systems 27 (1997), 205-226.

[DSVW04] M. Dyer, A. Sinclair, E. Vigoda, and D. Weitz, Mixing in time and space for

lattice spin systems: a combinatorial view, Random Struct. & Alg. 24 (2004),
461-479.

113

[DVOO] J. G. Dai and J. H. Vande Vate, The stability of two-station multi-type fluid

networks, Operations Research 48 (2000), 721-744.

[dVLK01] G. de Veciana, T. Lee, and T. Konstantopoulos, Stability and performance anal-

ysis of networks supporting elastic services, IEEE/ACM Transactions on Net-

working 9 (2001), no. 1, 2-14.

[DW96] J. G. Dai and G. Weiss, Stability and instability of fluid models for certain re-

entrant lines, Mathematics of Operations Research 21 (1996), 115-134.

[FV06] A. Frieze and E. Vigoda, Survey of Markov chains for randomly sampling color-

ings, To appear in Festschrift for Dominic Welsh (2006).

[Gam00] D. Gamarnik, Using fluid models to prove stability of adversarial queueing

networks, IEEE Transactions on Automatic Control. (Conference version in

FOCS98.) 4 (2000), 741-747.

[Gam02] , On deciding stability of constrained homogeneous random walks and

queueing systems, Mathematics of Operations Research 27 (2002), no. 2, 272-

293.

[Gam03] , Stability of adaptive and non-adaptive packet routing policies in adver-

sarial queueing networks, SIAM Journal on Computing. (Conference version in

STOC99.) (2003), 371-385.

[GH05] D. Gamarnik and J. Hasenbein, Instability in stochastic and fluid queueing net-

works, Ann. Appl. Probab. 15 (2005), no. 3, 1652-1690.

[GMP05] L. A. Goldberg, R. Martin, and M. Paterson, Strong spatial mixing with fewer

colors for lattice graphs, SIAM J. Comput. 35 (2005), no. 2, 486-517.

[God81] C. D. Godsil, Matchings and walks in graphs, J. Graph Th. 5 (1981), 285-297.

[Goe99] A. Goel, Stability of networks and protocols in the adversarial queueing model

for packet routing, Proc. 10th ACM-SIAM Symposium on Discrete Algorithms

(1999).

114

[Gur06] L. Gurvits, Hyperbolic polynomials approach to Van der Waerden/Schrijver-

Valiant like conjectures: sharper bounds, simpler proofs and algorithmic appli-

cations, Proceedings of the thirty-eighth annual ACM symposium on Theory of

computing, 2006.

[GW06] H. C. Gromoll and R. Williams, Fluid limit of a network with fair bandwidth

sharing and general document size distribution, Preprint (2006).

[Hoo66] P. Hooper, The undecidability of the Turing machine immortality problem, The

Journal of Symbolic Logic 2 (1966), 219-234.

[HU69] J. Hopcroft and J. Ullman, Formal languages and their relation to automata,

Addison-Wesley. Boston, MA, 1969.

[Jer95] M. Jerrum, A very simple algorithm for estimating the number of k-colourings of

a low-degree graph, Random Structures and Algorithms 7 (1995), no. 2, 157-165.

[Jon02] J. Jonasson, Uniqueness of uniform random colorings of regular trees, Statistics

and Probability Letters 57 (2002), 243-248.

[JS89] M. Jerrum and A. Sinclair, Approximating the permanent, SIAM journal on

computing 18 (1989), 1149-1178.

[JS97] , The Markov chain Monte Carlo method: an approach to approxi-

mate counting and integration, Approximation algorithms for NP-hard problems

(D. Hochbaum, ed.), PWS Publishing Company, Boston, MA, 1997.

[JS06] K. Jung and D. Shah, On correctness of belief propagation algorithm, Preprint

(2006).

[JSV04] M. Jerrum, A. Sinclair, and E. Vigoda, A polynomial-time approximation al-

gorithms for permanent of a matrix with non-negative entries, Journal of the

Association for Computing Machinery 51 (2004), no. 4, 671-697.

[JV96] M. Jerrum and V. Vazirani, A mildly exponential approximation algorithm for

the permanent, Algorithmica 16 (1996), no. 4-5, 392-401.

115

[KK94] S. Kumar and P. R. Kumar, Performance bounds for queueing networks and

scheduling policies, IEEE Transactions on Automatic Control 8 (1994), 1600-

1611.

[KK98] J. Kahn and J. H. Kim, Random matchings in regular graphs, Combinatorica 8

(1998), 201-226.

[KK01] S. Kumar and P. R. Kumar, Queueing network models in the design and analysis

of semiconductor wafer fabs, IEEE Transactions on Robotics and Automation

17 (2001), no. 5, 548-561.

[KM04] P. R. Kumar and J. Morrison, New linear program performance bounds for queue-

ing networks, Journal of Optimization Theory and Applications (2004), 575-597.

[KS90] P. R. Kumar and T. I. Seidman., Dynamic instabilities and stabilization meth-

ods in distributed real-time scheduling of manufacturing systems, IEEE Trans.

Automat. Control AC-35 (1990), 289-298.

[Kuh55] H. Kuhn, The hungarian method for the assignment problem, Naval Research

Logistic Quarterly (1955), no. 2, 83-97.

[LK91] S. H. Lu and P. R. Kumar, Distributed scheduling based on due dates and buffer

priorities, IEEE Trans. Automat. Control 36 (1991), 1406-1416.

[LPSR02] Z. Lotker, B. Patt-Shamir, and A. Rosen, New stability results for adversarial

queuing, SIAM Journal on Computing 33 (2002), no. 2, 286-303.

[LS04] X. Lin and N. Shroff, On the stability region of congestion control, Proceedings

of Allerton Conference, 2004.

[LSWOO] N. Linial, A. Samorodnitsky, and A. Wigderson, A deterministic strongly polyno-

mial algorithm for matrix scaling and approximate permanents, Combinatorica

20 (2000), no. 4, 545-568.

[Mat93] Y. Matiyasevich, Hilbert's tenth problem, Nauka Publishers. English translation

published by the MIT Press, 1993.

[Mey95] S. P. Meyn, Transience of multiclass queueing networks and their fluid models,
Ann. of Appl. Prob. 5 (1995), 946-957.

116

[MS06] A. Montanari and G. Semerjian, Rigorous inequalities between length and time

scales in glassy systems, Preprint in arXiv.org (2006).

[MT93] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Springer-

Verlag. London, UK., 1993.

[NT] C. Nair and P. Tetali, The correlation decay (CD) tree

and strong spatial mixing in multi-spin systems, Preprint on

http://front.math.ucdavis.edu/math.PR/0701494.

[OE72] O.J.Heilman and E.H.Lieb, Theory of monomer-dimer systems, Comm. Math.

Phys. 25 (1972), 190-232.

[PROO] A.A. Puhalskii and A.N. Rybko, Nonergodicity of a queueing network under

nonstability of its fluid model, Problems of Information Transmission 36 (2000),

26-41.

[RMOO] J. Roberts and L. Massoulie, Bandwidth sharing and admission control for elastic

traffic, Telecommunication Systems 15 (2000), 185-201.

[Ros02] A. Rosen, A note on models for non-probabilistic analysis of packet-switching

networks, Information Processing Letters 84 (2002), no. 5, 237-240.

[RS92] A. Rybko and A. Stolyar, On the ergodicity of stochastic processes describing

open queueing networks, Problemi Peredachi Informatsii 28 (1992), 3-26.

[Sch98] A. Schrijver, Counting 1-factors in regular bipartite graphs, Journal of Combina-

torial Theory, Series B 72 (1998), 122135.

[Sei94] T. I. Seidman, First come first serve can be unstable, IEEE Trans. Autom. Con-

trol 39 (1994), 2166-2170.

[Sha05] D. Shah, Max weight independent set and matching via max-product, Preprint

(2005).

[Sip97] M. Sipser, Introduction to the theory of computability, PWS Publishing Company,
1997.

[Sri04] R. Srikant, The mathematics of internet congestion control, Birkhauser, 2004.

117

[SS97] J. Salas and A. D. Sokal, Absence of phase transition for antiferromagnetic Potts

models via the Dobrushin uniqueness theorem, J. Statist. Phys. 86 (1997), no. 3-

4, 551-579.

[Sto95] A. Stolyar, On the stability of multiclass queueing networks: A relaxed suffi-

cient condition via limiting fluid processes, Markov Processes and Related Fields

(1995), 491-512.

[TJ02] S. Tatikonda and M. I. Jordan, Loopy belief propagation and Gibbs measures, In

Uncertainty in Artificial Intelligence (UAI), D. Koller and A. Darwiche (Eds).,
2002.

[Tsa97] P. Tsaparas, Stability in adversarial queueing theory, M.Sc. Thesis, University

of Toronto, 1997.

[Vad01] S. Vadhan, The complexity of counting in sparse, regular, and planar graphs,

SIAM Journal on Computing (2001), no. 2, 398-427.

[Val] L. G. Valiant.

[Va179] , The complexity of computing the permanent, Theoretical Computer Sci-

ence 8 (1979), 189-201.

[vdB98] J. van den Berg, On the absence of phase transition in the monomer-dimer model,

CWI reports, PNA-R9813, ISSN 1386-3711 (1998).

[Vig00] E. Vigoda, Improved bounds for sampling colorings, Journal of Mathematical

Physics (2000).

[Wei06] D. Weitz, Counting independent sets up to the tree threshold, Proc. 38th Ann.

Symposium on the Theory of Computing (2006).

[YFWOO] J. Yedidia, W. Freeman, and Y. Weiss, Understanding Belief Propagation and

its generalizations, Mitsubishi Elect. Res. Lab. (2000), no. TR-2001-22.

118

