23,435 research outputs found

    Retrieval information file relating to assigned frequencies, part 2 Final report, Jan. - Sep. 1969

    Get PDF
    Retrieval information file relating to assigned frequencies for use on IBM 360 compute

    Mesoscopic Mechanical Resonators as Quantum Non-Inertial Reference Frames

    Get PDF
    An atom attached to a micrometer-scale wire that is vibrating at a frequency of 100 MHz and with displacement amplitude 1 nm experiences an acceleration magnitude 10^9 ms^-2, approaching the surface gravity of a neutron star. As one application of such extreme non-inertial forces in a mesoscopic setting, we consider a model two-path atom interferometer with one path consisting of the 100 MHz vibrating wire atom guide. The vibrating wire guide serves as a non-inertial reference frame and induces an in principle measurable phase shift in the wave function of an atom traversing the wire frame. We furthermore consider the effect on the two-path atom wave interference when the vibrating wire is modeled as a quantum object, hence functioning as a quantum non-inertial reference frame. We outline a possible realization of the vibrating wire, atom interferometer using a superfluid helium quantum interference setup.Comment: Published versio

    On the mass of a Kerr-anti-de Sitter spacetime in D dimensions

    Full text link
    We show how to compute the mass of a Kerr-anti-de Sitter spacetime with respect to the anti-de Sitter background in any dimension, using a superpotential which has been derived from standard Noether identities. The calculation takes no account of the source of the curvature and confirms results obtained for black holes via the first law of thermodynamics.Comment: minor changes; accepted by CQ

    Superpotentials from variational derivatives rather than Lagrangians in relativistic theories of gravity

    Full text link
    The prescription of Silva to derive superpotential equations from variational derivatives rather than from Lagrangian densities is applied to theories of gravity derived from Lovelock Lagrangians in the Palatini representation. Spacetimes are without torsion and isolated sources of gravity are minimally coupled. On a closed boundary of spacetime, the metric is given and the connection coefficients are those of Christoffel. We derive equations for the superpotentials in these conditions. The equations are easily integrated and we give the general expression for all superpotentials associated with Lovelock Lagrangians. We find, in particular, that in Einstein's theory, in any number of dimensions, the superpotential, valid at spatial and at null infinity, is that of Katz, Bicak and Lynden-Bell, the KBL superpotential. We also give explicitly the superpotential for Gauss-Bonnet theories of gravity. Finally, we find a simple expression for the superpotential of Einstein-Gauss-Bonnet theories with an anti-de Sitter background: it is minus the KBL superpotential, confirming, as it should, the calculation of the total mass-energy of spacetime at spatial infinity by Deser and Tekin.Comment: Scheduled to appear in Class. Quantum Grav. August 200

    On the Evolutionary History of Stars and their Fossil Mass and Light

    Get PDF
    The total extragalactic background radiation can be an important test of the global star formation history (SFH). Using direct observational estimates of the SFH, along with standard assumptions about the initial mass function (IMF), we calculate the total extragalactic background radiation and the observed stellar density today. We show that plausible SFHs allow a significant range in each quantity, but that their ratio is very tightly constrained. Current estimates of the stellar mass and extragalactic background are difficult to reconcile, as long as the IMF is fixed to the Salpeter slope above 1 Msun. The joint confidence interval of these two quantities only agrees with that determined from the allowed range of SFH fits at the 3-sigma level, and for our best-fit values the discrepancy is about a factor of two. Alternative energy sources that contribute to the background, such as active galactic nuclei (AGN), Population III stars, or decaying particles, appear unlikely to resolve the discrepancy. However, changes to the IMF allow plausible solutions to the background problem. The simplest is an average IMF with an increased contribution from stars around 1.5--4 Msun. A ``paunchy'' IMF of this sort could emerge as a global average if low mass star formation is suppressed in galaxies experiencing rapid starbursts. Such an IMF is consistent with observations of star-forming regions, and would help to reconcile the fossil record of star formation with the directly observed SFH.Comment: 21 pages, 7 figures, 3 tables; submitted to Monthly Notice

    Mass and angular momenta of Kerr anti-de Sitter spacetimes in Einstein-Gauss-Bonnet theory

    Full text link
    We compute the mass and angular momenta of rotating anti-de Sitter spacetimes in Einstein-Gauss-Bonnet theory of gravity using a superpotential derived from standard Noether identities. The calculation relies on the fact that the Einstein and Einstein-Gauss-Bonnet vacuum equations are the same when linearized on maximally symmetric backgrounds and uses the recently discovered D-dimensional Kerr-anti-de Sitter solutions to Einstein's equations

    Some Aspects of New CDM Models and CDM Detection Methods

    Full text link
    We briefly review some recent Cold Dark Matter (CDM) models. Our main focus are charge symmetric models of WIMPs which are not the standard SUSY LSP's (Lightest Supersymmetric Partners). We indicate which experiments are most sensitive to certain aspects of the models. In particular we discuss the manifestations of the new models in neutrino telescopes and other set-ups. We also discuss some direct detection experiments and comment on measuring the direction of recoil ions--which is correlated with the direction of the incoming WIMP. This could yield daily variations providing along with the annual modulation signatures for CDM.Comment: 14 page

    Parametrically excited "Scars" in Bose-Einstein condensates

    Full text link
    Parametric excitation of a Bose-Einstein condensate (BEC) can be realized by periodically changing the interaction strength between the atoms. Above some threshold strength, this excitation modulates the condensate density. We show that when the condensate is trapped in a potential well of irregular shape, density waves can be strongly concentrated ("scarred") along the shortest periodic orbits of a classical particle moving within the confining potential. While single-particle wave functions of systems whose classical counterpart is chaotic may exhibit rich scarring patterns, in BEC, we show that nonlinear effects select mainly those scars that are locally described by stripes. Typically, these are the scars associated with self retracing periodic orbits that do not cross themselves in real space. Dephasing enhances this behavior by reducing the nonlocal effect of interference

    Hadron Masses and Screening from AdS Wilson Loops

    Get PDF
    We show that in strongly coupled N=4 SYM the binding energy of a heavy and a light quark is independent of the strength of the coupling constant. As a consequence we are able to show that in the presence of light quarks the analog of the QCD string can snap and color charges are screened. The resulting neutral mesons interact with each other only via pion exchange and we estimate the massesComment: 4 pages, revte
    • …
    corecore