2,915 research outputs found
On the relationship between cooling flows and bubbles
A common feature of the X-ray bubbles observed in Chandra images of some cooling flow clusters is that they appear to be surrounded by bright, cool shells. Temperature maps of a few nearby luminous clusters reveal that the shells consist of the coolest gas in the clusters—much cooler than the surrounding medium. Using simple models, we study the effects of this cool emission on the inferred cooling flow properties of clusters. We find that the introduction of bubbles into model clusters that do not have cooling flows results in temperature and surface brightness profiles that resemble those seen in nearby cooling flow clusters. They also approximately reproduce the recent XMM-Newton and Chandra observations of a high minimum temperature of ~1-3 keV. Hence, bubbles, if present, must be taken into account when inferring the physical properties of the intracluster medium. In the case of some clusters, bubbles may account entirely for these observed features, calling into question their designation as clusters with cooling flows. However, since not all nearby cooling flow clusters show bubble-like features, we suggest that there may be a diverse range of physical phenomena that give rise to the same observed features
Receptive field vectors of genetically-identified retinal ganglion cells reveal cell-type-dependent visual functions
Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information ("Quadratic Mutual Information"). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells' response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types
Baryons in the warm-hot intergalactic medium
Approximately 30%-40% of all baryons in the present-day universe reside in a warm-hot intergalactic medium (WHIM), with temperatures in the range 105 \u3c T \u3c 107 K. This is a generic prediction from six hydrodynamic simulations of currently favored structure formation models having a wide variety of numerical methods, input physics, volumes, and spatial resolutions. Most of these warm-hot baryons reside in diffuse large-scale structures with a median overdensity around 10-30, not in virialized objects such as galaxy groups or galactic halos. The evolution of the WHIM is primarily driven by shock heating from gravitational perturbations breaking on mildly nonlinear, nonequilibrium structures such as filaments. Supernova feedback energy and radiative cooling play lesser roles in its evolution. WHIM gas may be consistent with observations of the 0.25 keV X-ray background without being significantly heated by nongravitational processes because the emitting gas is very diffuse. Our results confirm and extend previous work by Cen & Ostriker and Davé et al
Peer influence in network markets: a theoretical and empirical analysis
Network externalities spur the growth of networks and the adoption of network goods in two ways. First, they make it more attractive to join a network the larger its installed base. Second, they create incentives for network members to actively recruit new members. Despite indications that the latter "peer effect" can be more important for network growth than the installed-base effect, it has so far been largely ignored in the literature. We address this gap using game-theoretical models. When all early adopters can band together to exert peer influence-an assumption that fits, e.g., the case of firms supporting a technical standard-we find that the peer effect induces additional growth of the network by a factor. When, in contrast, individuals exert peer influence in small groups of size n, the increase in network size is by an additive constant-which, for small networks, can amount to a large relative increase. The difference between small, local, personal networks and large, global, anonymous networks arises endogenously from our analysis. Fundamentally, the first type of networks is "tie-reinforcing," the other, "tie-creating". We use survey data from users of the Internet services, Skype and eBay, to illustrate the main logic of our theoretical results. As predicted by the model, we find that the peer effect matters strongly for the network of Skype users-which effectively consists of numerous small sub-networks-but not for that of eBay users. Since many network goods give rise to small, local networks
Evidence for the classical integrability of the complete AdS(4) x CP(3) superstring
We construct a zero-curvature Lax connection in a sub-sector of the
superstring theory on AdS(4) x CP(3) which is not described by the
OSp(6|4)/U(3) x SO(1,3) supercoset sigma-model. In this sub-sector worldsheet
fermions associated to eight broken supersymmetries of the type IIA background
are physical fields. As such, the prescription for the construction of the Lax
connection based on the Z_4-automorphism of the isometry superalgebra OSp(6|4)
does not do the job. So, to construct the Lax connection we have used an
alternative method which nevertheless relies on the isometry of the target
superspace and kappa-symmetry of the Green-Schwarz superstring.Comment: 1+26 pages; v2: minor typos corrected, acknowledgements adde
Gluino Decay as a Probe of High Scale Supersymmetry Breaking
A supersymmetric standard model with heavier scalar supersymmetric particles
has many attractive features. If the scalar mass scale is O(10 - 10^4) TeV, the
standard model like Higgs boson with mass around 125 GeV, which is strongly
favored by the LHC experiment, can be realized. However, in this scenario the
scalar particles are too heavy to be produced at the LHC. In addition, if the
scalar mass is much less than O(10^4) TeV, the lifetime of the gluino is too
short to be measured. Therefore, it is hard to probe the scalar particles at a
collider. However, a detailed study of the gluino decay reveals that two body
decay of the gluino carries important information on the scalar scale. In this
paper, we propose a test of this scenario by measuring the decay pattern of the
gluino at the LHC.Comment: 29 pages, 9 figures; version published in JHE
Thinking about Later Life: Insights from the Capability Approach
A major criticism of mainstream gerontological frameworks is the inability of such frameworks to appreciate and incorporate issues of diversity and difference in engaging with experiences of aging. Given the prevailing socially structured nature of inequalities, such differences matter greatly in shaping experiences, as well as social constructions, of aging. I argue that Amartya Sen’s capability approach (2009) potentially offers gerontological scholars a broad conceptual framework that places at its core consideration of human beings (their values) and centrality of human diversity. As well as identifying these key features of the capability approach, I discuss and demonstrate their relevance to thinking about old age and aging. I maintain that in the context of complex and emerging identities in later life that shape and are shaped by shifting people-place and people-people relationships, Sen’s capability approach offers significant possibilities for gerontological research
Flavor in Minimal Conformal Technicolor
We construct a complete, realistic, and natural UV completion of minimal
conformal technicolor that explains the origin of quark and lepton masses and
mixing angles. As in "bosonic technicolor", we embed conformal technicolor in a
supersymmetric theory, with supersymmetry broken at a high scale. The exchange
of heavy scalar doublets generates higher-dimension interactions between
technifermions and quarks and leptons that give rise to quark and lepton masses
at the TeV scale. Obtaining a sufficiently large top quark mass requires strong
dynamics at the supersymmetry breaking scale in both the top and technicolor
sectors. This is natural if the theory above the supersymmetry breaking also
has strong conformal dynamics. We present two models in which the strong top
dynamics is realized in different ways. In both models, constraints from
flavor-changing effects can be easily satisfied. The effective theory below the
supersymmetry breaking scale is minimal conformal technicolor with an
additional light technicolor gaugino. We argue that this light gaugino is a
general consequence of conformal technicolor embedded into a supersymmetric
theory. If the gaugino has mass below the TeV scale it will give rise to an
additional pseudo Nambu-Goldstone boson that is observable at the LHC.Comment: 37 pages; references adde
Human arachnoid granulations Part I: a technique for quantifying area and distribution on the superior surface of the cerebral cortex
<p>Abstract</p> <p>Background</p> <p>The arachnoid granulations (AGs) are herniations of the arachnoid membrane into the dural venous sinuses on the surface of the brain. Previous morphological studies of AGs have been limited in scope and only one has mentioned surface area measurements. The purpose of this study was to investigate the topographic distribution of AGs on the superior surface of the cerebral cortex.</p> <p>Methods</p> <p><it>En face </it>images were taken of the superior surface of 35 formalin-fixed human brains. AGs were manually identified using Adobe Photoshop, with a pixel location containing an AG defined as 'positive'. A set of 25 standard fiducial points was marked on each hemisphere for a total of 50 points on each image. The points were connected on each hemisphere to create a segmented image. A standard template was created for each hemisphere by calculating the average position of the 25 fiducial points from all brains. Each segmented image was mapped to the standard template using a linear transformation. A topographic distribution map was produced by calculating the proportion of AG positive images at each pixel in the standard template. The AG surface area was calculated for each hemisphere and for the total brain superior surface. To adjust for different brain sizes, the proportional involvement of AGs was calculated by dividing the AG area by the total area.</p> <p>Results</p> <p>The total brain average surface area of AGs was 78.53 ± 13.13 mm<sup>2 </sup>(n = 35) and average AG proportional involvement was 57.71 × 10<sup>-4 </sup>± 7.65 × 10<sup>-4</sup>. Regression analysis confirmed the reproducibility of AG identification between independent researchers with r<sup>2 </sup>= 0.97. The surface AGs were localized in the parasagittal planes that coincide with the region of the lateral lacunae.</p> <p>Conclusion</p> <p>The data obtained on the spatial distribution and <it>en face </it>surface area of AGs will be used in an <it>in vitro </it>model of CSF outflow. With an increase in the number of samples, this analysis technique can be used to study the relationship between AG surface area and variables such as age, race and gender.</p
- …