379 research outputs found

    Open orbifold Gromov-Witten invariants of [C^3/Z_n]: localization and mirror symmetry

    Full text link
    We develop a mathematical framework for the computation of open orbifold Gromov-Witten invariants of [C^3/Z_n], and provide extensive checks with predictions from open string mirror symmetry. To this aim we set up a computation of open string invariants in the spirit of Katz-Liu, defining them by localization. The orbifold is viewed as an open chart of a global quotient of the resolved conifold, and the Lagrangian as the fixed locus of an appropriate anti-holomorphic involution. We consider two main applications of the formalism. After warming up with the simpler example of [C^3/Z_3], where we verify physical predictions of Bouchard, Klemm, Marino and Pasquetti, the main object of our study is the richer case of [C^3/Z_4], where two different choices are allowed for the Lagrangian. For one choice, we make numerical checks to confirm the B-model predictions; for the other, we prove a mirror theorem for orbifold disc invariants, match a large number of annulus invariants, and give mirror symmetry predictions for open string invariants of genus \leq 2.Comment: 44 pages + appendices; v2: exposition improved, misprints corrected, version to appear on Selecta Mathematica; v3: last minute mistake found and fixed for the symmetric brane setup of [C^3/Z_4]; in pres

    Anomaly Mediation, Fayet-Iliopoulos D-terms and the Renormalisation Group

    Full text link
    We address renormalisation group evolution issues that arise in the Anomaly Mediated Supersymmetry Breaking scenario when the tachyonic slepton problem is resolved by Fayet-Iliopoulos term contributions. We present typical sparticle spectra both for the original formulation of this idea and an alternative using Fayet-Iliopoulos terms for a U(1) compatible with a straightforward GUT embedding.Comment: 20 pages, 2 figure

    The Breakdown of Topology at Small Scales

    Full text link
    We discuss how a topology (the Zariski topology) on a space can appear to break down at small distances due to D-brane decay. The mechanism proposed coincides perfectly with the phase picture of Calabi-Yau moduli spaces. The topology breaks down as one approaches non-geometric phases. This picture is not without its limitations, which are also discussed.Comment: 12 pages, 2 figure

    Mirror Manifolds in Higher Dimension

    Full text link
    We describe mirror manifolds in dimensions different from the familiar case of complex threefolds. We emphasize the simplifying features of dimension three and supply more robust methods that do not rely on such special characteristics and hence naturally generalize to other dimensions. The moduli spaces for Calabi--Yau dd-folds are somewhat different from the ``special K\"ahler manifolds'' which had occurred for d=3d=3, and we indicate the new geometrical structures which arise. We formulate and apply procedures which allow for the construction of mirror maps and the calculation of order-by-order instanton corrections to Yukawa couplings. Mathematically, these corrections are expected to correspond to calculating Chern classes of various parameter spaces (Hilbert schemes) for rational curves on Calabi--Yau manifolds. Our results agree with those obtained by more traditional mathematical methods in the limited number of cases for which the latter analysis can be carried out. Finally, we make explicit some striking relations between instanton corrections for various Yukawa couplings, derived from the associativity of the operator product algebra.Comment: 44 pages plus 3 tables using harvma

    The Quantum McKay Correspondence for polyhedral singularities

    Get PDF
    Let G be a polyhedral group, namely a finite subgroup of SO(3). Nakamura's G-Hilbert scheme provides a preferred Calabi-Yau resolution Y of the polyhedral singularity C^3/G. The classical McKay correspondence describes the classical geometry of Y in terms of the representation theory of G. In this paper we describe the quantum geometry of Y in terms of R, an ADE root system associated to G. Namely, we give an explicit formula for the Gromov-Witten partition function of Y as a product over the positive roots of R. In terms of counts of BPS states (Gopakumar-Vafa invariants), our result can be stated as a correspondence: each positive root of R corresponds to one half of a genus zero BPS state. As an application, we use the crepant resolution conjecture to provide a full prediction for the orbifold Gromov-Witten invariants of [C^3/G].Comment: Introduction rewritten. Issue regarding non-uniqueness of conifold resolution clarified. Version to appear in Inventione

    C^2/Z_n Fractional branes and Monodromy

    Full text link
    We construct geometric representatives for the C^2/Z_n fractional branes in terms of branes wrapping certain exceptional cycles of the resolution. In the process we use large radius and conifold-type monodromies, and also check some of the orbifold quantum symmetries. We find the explicit Seiberg-duality which connects our fractional branes to the ones given by the McKay correspondence. We also comment on the Harvey-Moore BPS algebras.Comment: 34 pages, v1 identical to v2, v3: typos fixed, discussion of Harvey-Moore BPS algebras update

    New results on superconformal quivers

    Full text link
    All superconformal quivers are shown to satisfy the relation c = a and are thus good candidates for being the field theory living on D3 branes probing CY singularities. We systematically study 3 block and 4 block chiral quivers which admit a superconformal fixed point of the RG equation. Most of these theories are known to arise as living on D3 branes at a singular CY manifold, namely complex cones over del Pezzo surfaces. In the process we find a procedure of getting a new superconformal quiver from a known one. This procedure is termed "shrinking" and, in the 3 block case, leads to the discovery of two new models. Thus, the number of superconformal 3 block quivers is 16 rather than the previously known 14. We prove that this list exausts all the possibilities. We suggest that all rank 2 chiral quivers are either del Pezzo quivers or can be obtained by shrinking a del Pezzo quiver and verify this statement for all 4 block quivers, where a lot of "shrunk'' del Pezzo models exist.Comment: 51 pages, many figure

    Quivers from Matrix Factorizations

    Full text link
    We discuss how matrix factorizations offer a practical method of computing the quiver and associated superpotential for a hypersurface singularity. This method also yields explicit geometrical interpretations of D-branes (i.e., quiver representations) on a resolution given in terms of Grassmannians. As an example we analyze some non-toric singularities which are resolved by a single CP1 but have "length" greater than one. These examples have a much richer structure than conifolds. A picture is proposed that relates matrix factorizations in Landau-Ginzburg theories to the way that matrix factorizations are used in this paper to perform noncommutative resolutions.Comment: 33 pages, (minor changes

    Extended Holomorphic Anomaly in Gauge Theory

    Full text link
    The partition function of an N=2 gauge theory in the Omega-background satisfies, for generic value of the parameter beta=-eps_1/eps_2, the, in general extended, but otherwise beta-independent, holomorphic anomaly equation of special geometry. Modularity together with the (beta-dependent) gap structure at the various singular loci in the moduli space completely fixes the holomorphic ambiguity, also when the extension is non-trivial. In some cases, the theory at the orbifold radius, corresponding to beta=2, can be identified with an "orientifold" of the theory at beta=1. The various connections give hints for embedding the structure into the topological string.Comment: 25 page

    Topological String Amplitudes, Complete Intersection Calabi-Yau Spaces and Threshold Corrections

    Full text link
    We present the most complete list of mirror pairs of Calabi-Yau complete intersections in toric ambient varieties and develop the methods to solve the topological string and to calculate higher genus amplitudes on these compact Calabi-Yau spaces. These symplectic invariants are used to remove redundancies in examples. The construction of the B-model propagators leads to compatibility conditions, which constrain multi-parameter mirror maps. For K3 fibered Calabi-Yau spaces without reducible fibers we find closed formulas for all genus contributions in the fiber direction from the geometry of the fibration. If the heterotic dual to this geometry is known, the higher genus invariants can be identified with the degeneracies of BPS states contributing to gravitational threshold corrections and all genus checks on string duality in the perturbative regime are accomplished. We find, however, that the BPS degeneracies do not uniquely fix the non-perturbative completion of the heterotic string. For these geometries we can write the topological partition function in terms of the Donaldson-Thomas invariants and we perform a non-trivial check of S-duality in topological strings. We further investigate transitions via collapsing D5 del Pezzo surfaces and the occurrence of free Z2 quotients that lead to a new class of heterotic duals.Comment: 117 pages, 1 Postscript figur
    • …
    corecore