We develop a mathematical framework for the computation of open orbifold
Gromov-Witten invariants of [C^3/Z_n], and provide extensive checks with
predictions from open string mirror symmetry. To this aim we set up a
computation of open string invariants in the spirit of Katz-Liu, defining them
by localization. The orbifold is viewed as an open chart of a global quotient
of the resolved conifold, and the Lagrangian as the fixed locus of an
appropriate anti-holomorphic involution. We consider two main applications of
the formalism. After warming up with the simpler example of [C^3/Z_3], where we
verify physical predictions of Bouchard, Klemm, Marino and Pasquetti, the main
object of our study is the richer case of [C^3/Z_4], where two different
choices are allowed for the Lagrangian. For one choice, we make numerical
checks to confirm the B-model predictions; for the other, we prove a mirror
theorem for orbifold disc invariants, match a large number of annulus
invariants, and give mirror symmetry predictions for open string invariants of
genus \leq 2.Comment: 44 pages + appendices; v2: exposition improved, misprints corrected,
version to appear on Selecta Mathematica; v3: last minute mistake found and
fixed for the symmetric brane setup of [C^3/Z_4]; in pres