7 research outputs found

    HEp-2 cell classification using multilevel wavelet decomposition

    No full text
    The analysis of anti-nuclear antibodies in HEp- 2 cells by Indirect Immunofluorescence (IIF) is considered a powerful, sensitive, and comprehensive test for auto-antibodies analysis for autoimmune diseases. The aim of this study is to explore the use of wavelet texture analysis for automated categorization of auto-antibodies into one of the six categories of immunofluorescent staining. Gray level co-occurrence matrix (GLCM) features were extracted over sub-bands obtained from multi-level wavelet decomposition. In this study, an attempt is also made to investigate effect of different wavelet bases and their superiority on spatial domain features on classification task at hand. A qualitative as well as quantitative comparison is done between GLCM features in wavelet domain and spatial domain. Discrete Meyer wavelet has been found to be the most discriminating for this classification task

    Nickel - Zinc Ferrite From Reverse Micelle Process: Structural And Magnetic Properties, Mössbauer Spectroscopy Characterization

    No full text
    Nickel - zinc ferrite (Ni0.58Zn0.42Fe 2O4) nanoparticles with an average crystallite size of about 8.4 nm were synthesized by reverse micelle technique. Bulk sample was prepared by annealing nickel - zinc ferrite (NZFO) nanoparticles at 1473 K. Room temperature Mössbauer spectra of NZFO nanoparticles exhibit collective magnetic excitations, while annealed (bulk) NZFO particles have the ferrimagnetic phase. At 5 K, the broad shape of Mössbauer spectral lines for nanoparticles in comparison to bulk particles provide clear evidence of a wide distribution of magnetic fields acting at the Fe3+ nuclei in the nanoparticles. Bulk NZFO particles and inner core of nanoparticles exhibit a fully inverse spinel structure with a Néel type collinear spin arrangement, whereas the major feature of the ionic and spin configuration in the grain boundary (surface) region are a nonequilibrium cation distribution and a canted spin arrangement. The cation distribution of nano and bulk particles has been studied by using in-field Mössbauer spectroscopy. The dependence of Mössbauer parameters viz isomer shift, quadrupole splitting, line width, and hyperfine magnetic field on bulk and nano samples has been studied. As a consequence of spin canting and site exchange of cations in the surface shell, the NZFO nanoparticles exhibit a reduced nonsaturating magnetization compared to bulk particles. The thickness of the surface shell of about 1.3 nm estimated from Mössbauer measurement is found to be in agreement with that obtained from magnetization measurements. Finite size effects have implications on the temperature dependence of the saturation magnetization. The fit of the saturation magnetization to the Bloch T3/2 law for nanoparticles yields a Bloch constant larger than the bulk particles. It was found that a better fit is obtained if the exponent of the temperature is in the range of 1.43 to 1.5. The larger value of Bloch constant (b) suggests the possibility of interactions among the nanoparticles. The dynamic ac susceptibility measurement shows the relaxation time T0 as 1.77 × 10-13 s. This value is in good agreement with the theoretical value. Such an agreement is possibly as a result of interparticle interaction in nanoparticle sample. © 2009 American Chemical Society.113492078520794Zhou, C., Schulthess, T.C., Landau, D.P., (2006) J. Appl. Phys, 99, pp. 08H906Wang, Z.L., Liu, Y., Zhang, Z., (2002) Handbook of Nanophase and Nanostructured Materials, 3. , Kluwer Academic/Plenum Publishers: New YorkSugimoto, M., (1999) J. Am. Ceram. Soc, 82, p. 269Willard, M.A., Kurihara, L.K., Carpenter, E.E., Calvin, S., Harris, V.G., (2004) Int. Mater. Rev, 49, p. 125Lüders, U., Barthélémy, A., Bibes, M., Bouzehouane, K., Fusil, S., Jacquet, E., Contour, J.-P., Fert, A., (2006) Adv. Mater, 18, p. 1733Šepelák, V., Feldhoff, A., Heitjans, P., Krumeich, F., Menzel, D., Litterst, F.J., Bergmann, I., Becker, K.D., (2006) Chem. Mater, 18, p. 3057Šepelák, V., Bergmann, I., Feldhoff, A., Heitjans, P., Krumeich, F., Menzel, D., Litterst, F.J., Becker, K.D., (2007) J. Phys. Chem. C, 111, p. 5026Yener, D.O., Giesche, H., (1987) J. Am. Ceram. Soc, 2001, p. 84Nanni, A., Dei, L., (2003) Langmuir, 19, p. 933Gan, L.M., Zhang, L.H., Chan, H.S.O., Chew, C.H., Loo, B.H., (1996) J. Mater. Sci, 31, p. 1071Thakur, S., Katyal, S.C., Singh, M., (2007) Appl. Phys. Lett, 91, p. 262501Thakur, S., Katyal, S.C., Gupta, A., Reddy, V.R., Singh, M., (2009) J. Appl. Phys, 105, p. 1Morrison, S.A., Cahill, C.L., Carpenter, E.E., Calvin, S., Swaminathan, R., Mchenry, M.E., Harris, V.G., (2004) J. Appl. Phys, 95, p. 6392Vestal, C.R., Zhang, Z.J., (2004) Int. J. Nanotechnol, 1, p. 240Uskokoví, V., Drofenik, M., Ban, I., (2004) J. Magn. Magn. Mater, 284, p. 294Hochepied, J.F., Bonville, P., Pileni, M.P., (2000) J. Phys. Chem. B, 104, p. 905Martinez, B., Obradors, X., Balcells, L., Rouanet, A., Monty, C., (1998) Phys. Rev. Lett, 80, p. 181Kodama, R.H., Berkowitz, A.E., McNiff Jr, E.J., Foner, S., (1997) Mater. Sci. Forum, 235-238, p. 643Morrish, A.H., Haneda, K., (1983) J. Magn. Magn. Mater, 35, p. 105Lee, Penn, R.Banfield, J. F. Science 1988, 281, 969Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T., Lee Penn, R., (2000) Science, 289, p. 751Mendes, P.M., Chen, Y., Palmer, R.E., Nikitin, K., Fitzmaurice, D., Preece, J.A., (2003) J. Phys.: Condens. Matter, 15, pp. S3047Shtrikman, S., Wohlfarth, E.P., (1981) Phys. Lett. A, 85, p. 467(2004) Joint Committee on Powder Diffraction Standards (JCPDS) Powder Diffraction File (PDF), , International centre for Diffraction Data: Newtown Square, PASawatzky, G.A., Van Der Woude, F., Morrish, A.H., (1969) Phys. Rev, 183, p. 383Tuék, J., Zbaril, R., (2005) Czech. J. Phys, 55, p. 893Bajpaians, A., Banerjee, A., (1999) Rev. Sci. Instrum, 68, p. 4075Thakur, S., Katyal, S.C., Singh, M., (2009) J. Magn. Magn. Mater, 321, p. 1Srivastva, R.C., Khan, D.C., Das, A.R., (1990) Phys. Rev. B, 41, p. 125147Leung, L.K., Evans, B.J., Morrish, A.H., (1973) Phys. Rev. B, 8, p. 29Yang, D., Lavoie, K.L., Zhang, Y., Zhang, Z., Ge, S., (2003) J. Appl. Phys, 93, p. 7492Albuquerque, A.S., Ardisson, J.D., Macedo, W.A.A., Alves, M.C.M., (2000) J. Appl. Phys, 87, p. 4352Dooling, T.A., Cook, D.C., (1991) J. Appl. Phys, 69, p. 5352Amer, M. A.Hiti, M. El J. Maen. Maen. Mater. 2001, 234, 118Long, G.J., (1987) Mössbauer spectroscopy Applied to Inorganic Chemistry, 2. , Plenum Press: New YorkAlves, C.R., Aquino, R., Sousa, M.H., Rechenberg, H.R., Goya, G.F., Tourinho, F.A., Depeyrot, J., (2004) J. Metasatable Nanocryst. Mater, 20-21, p. 694Margulies, S., Ethrman, J.R., (1961) Nucl. Instrum Methods, 12, p. 131Sorescu, M., Diamandescu, L., Ramesh, P.D., Roy, R., Daly, A., Bruno, Z., (2007) Mater. Chem. Phys, 101, p. 410Chkoundali, S., Ammar, S., Jouini, N., Fiévet, F., Molinié, P., Danot, M., Villain, F., Grenéche, J.-M., (2004) J. Phys.: Condens. Matter, 16, p. 4357Oliver, S.A., Hamdeh, H.H., Ho, J.C., (1999) Phys. Rev. B, 60, p. 3400Ngo, A.T., Bonville, P., Pileni, M.P., (2001) J. Appl. Phys, 89, p. 3370Muroi, M., Street, R., McCormick, P.G., Amighian, J., (2001) Phys. Rev. B, 63, p. 184414Zhang, Y.D., Ge, S.H., Zhang, H., Hui, S., Budnick, J.I., Hines, W.A., Yacaman, M.J., Mki, M., (2004) J. Appl. Phys, 95, p. 7130Haneda, K., Morrish, A.H., (1988) J. Appl. Phys, 63, p. 4258Upadhyay, C., Verma, H.C., Anand, S., (2004) J. Appl. Phys, 95, p. 5746Smith, J., Wijn, H.P.J., (1961) Ferrites, , Philips Technical Library: AmsterdamZheng, M., Wu, X.C., Zou, B.S., Wang, Y.J., (1998) J. Magn. Magn. Mater, 183, p. 152Bitoh, T., Ohba, K., Takamatsu, M., Shirane, T., Hikazawa, S., (1995) J. Phys. Soc. Jpn, 64, p. 1305Mamiya, H., Nakatani, I., Furubayashi, T., (1998) Phys. Rev, 80, p. 177Battle, X., del Muro Garcia, M., Labarta, A., (1997) Phys. Rev. B, 55, p. 644Kodama, R.H., (1999) J. Magn. Magn. Mater, 200, p. 359Hendriksen, P.V., Linderoth, S., Lingard, P.-A., (1992) J. Magn. Magn. Mater, 104-107, p. 1577Didukh, P., Greneche, J.M., Slawska-Waniewska, A., Fanin, P.C., Casas, L., (2002) J. Magn. Magn. Mater, 242-245, p. 613Hendriksen, P.V., Linderoth, S., Lingard, P.-A., (1993) J. Phys.: Condens. Matter, 5, p. 5675Aquino, R., Depeyrot, J., Sousa, M.H., Tourinho, F.A., Dubois, E., Perzynski, R., (2005) Phys. Rev. B, 72, p. 184435Chakravorty, D., Banerjee, S., Pal, M., Brahma, P., Roy, S., Roy, B., Das, D., (2001) Frontiers in Material Physics, 1. , Allied Publishers: New DelhiAmmar, S., Jouini, N., Fiévet, F., Beji, Z., Smiri, Leila, Moliné, P., Grenéche, J.-M., (2006) J. Phys.: Condens. Matter, 18, p. 9055Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C., Devlin, E., Kostikas, A., (1996) Phys. Rev. B, 54, p. 9288Linderoth, S., Balcells, L., Laborta, A., Tejada, J., Hendriksen, P.V., Sethi, S.A., (1993) J. Magn. Magn. Mater, 124, p. 269Roy, S., Dubenko, I., Edorh, D.D., Ali, N., (2004) J. Appl. Phys, 96, p. 1202Cullity, B.D., (1972) Introduction to Magnetic Materials, , Addison-Wesley: New YorkWernsdorfer, W., Orozco, E.B., Hasselbach, K., Benoit, A., Barbara, B., Demoncy, N., Loiseau, A., Mailly, D., (1997) Phys. Rev. Lett, 78, p. 1791Hendriksen, P.V., Linderoth, S., Lindgard, P.-A., (1993) Phys. Rev. B, 48, p. 7259Dormann, J.L., Fiorani, D., Tronc, E., (1997) Adv. Chem. Phys, 98, p. 326De Toro, J.A., Lopez de la Torre, M.A., Riveiro, J.M., Sacz Puche, R., Gomez-Herrero, A., Otero-Diaz, L.C., (1999) Phys. Rev. B, 60, p. 918Morrish, A.H., (1965) The physical principles of Magnetism, , Wiley, New YorkPal, M., Brahma, P., Chakravorty, D., Bhattacharyya, D., Maiti, H.S., (1996) J. Magn. Magn. Mater, 164, p. 25
    corecore