48 research outputs found

    On the optimal relative orientation of radicals in the cryptochrome magnetic compass

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this record.Birds appear to be equipped with an innate magnetic compass. One biophysical model of this sense relies on spin dynamics in photogenerated radical pairs in the protein cryptochrome. This study employs a systematic approach to predict the dependence of the compass sensitivity on the relative orientation of the constituent radicals for spin systems comprising up to 21 hyperfine interactions. Evaluating measures of compass sensitivity (anisotropy) and precision (optimality) derived from the singlet yield, we find the ideal relative orientations for the radical pairs consisting of the flavin anion (F•-) coupled with a tryptophan cation (W•+) or tyrosine radical (Y•). For the geomagnetic field, the two measures are found to be anticorrelated in [F•- W•+]. The angle spanned by the normals to the aromatic planes of the radicals is the decisive parameter determining the compass sensitivity. The third tryptophan of the tryptophan triad/tetrad, which has been implicated with magnetosensitive responses, exhibits a comparably large anisotropy, but unfavorable optimality. Its anisotropy could be boosted by an additional ∼50% by optimizing the relative orientation of the radicals. For a coherent lifetime of 1 μs, the maximal relative anisotropy of [F•- W•+] is 0.27%. [F•- Y•] radical pairs outperform [F•- W•+] for most relative orientations. Furthermore, anisotropy and optimality can be simultaneously maximized. The entanglement decays rapidly, implicating it as a situational by-product rather than a fundamental driver within the avian compass. In magnetic fields of higher intensity, the relative orientation of radicals in [F•- W•+] is less important than for the geomagnetic field.Engineering and Physical Sciences Research Council (EPSRC

    Structure of the two-component S-layer of the archaeon Sulfolobus acidocaldarius

    Get PDF
    This is the author accepted manuscript. The final version is available from eLife Sciences Publications via the DOI in this recordData availability: The atomic coordinates of SlaA were deposited in the Protein Data Bank (https://www.rcsb.org/) with accession numbers PDB-7ZCX, PDDB-8AN3, and PDB-8AN3 for pH 4, 7 and 10, respectively. The electron density maps were deposited in the EM DataResource (https://www.emdataresource.org/) with accession numbers EMD-14635, EMD-15531 and EMD-15531 for pH 4, 7 and 10, respectively. Sub-tomogram averaging map of the S-layer has been deposited in the EMDB (EMD-18127) and models of the hexameric and trimeric pores in the Protein Databank under accession codes PDB-8QP0 and PDB-8QOX, respectivelyOther structural data used in this study are: H. volcanii csg (PDB ID: 7PTR, http://dx.doi.org/10.2210/pdb7ptr/pdb), and C. crescentus RsaA ((N-terminus PDB ID: 6T72, http://dx.doi.org/10.2210/pdb6t72/pdb, C-terminus PDB ID: 5N8P, http://dx.doi.org/10.2210/pdb5n8p/pdb).Surface layers (S-layers) are resilient two-dimensional protein lattices that encapsulate many bacteria and most archaea. In archaea, S-layers usually form the only structural component of the cell wall and thus act as the final frontier between the cell and its environment. Therefore, S-layers are crucial for supporting microbial life. Notwithstanding their importance, little is known about archaeal S-layers at the atomic level. Here, we combined single particle cryo electron microscopy (cryoEM), cryo electron tomography (cryoET) and Alphafold2 predictions to generate an atomic model of the two-component S-layer of Sulfolobus acidocaldarius. The outer component of this S-layer (SlaA) is a flexible, highly glycosylated, and stable protein. Together with the inner and membrane-bound component (SlaB), they assemble into a porous and interwoven lattice. We hypothesise that jackknife-like conformational changes, changes play important roles in S-layer assembly.European Research CouncilWellcome TrustWellcome TrustAgence Nationale de la RechercheAgence Nationale de la RechercheLeverhulme TrustBiotechnology and Biological Sciences Research Council (BBSRC

    Quantum biology: an update and perspective

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record. Data Availability Statement: Not applicable.Understanding the rules of life is one of the most important scientific endeavours and has revolutionised both biology and biotechnology. Remarkable advances in observation tech-niques allow us to investigate a broad range of complex and dynamic biological processes in which living systems could exploit quantum behaviour to enhance and regulate biological functions. Recent evidence suggests that these non-trivial quantum mechanical effects may play a crucial role in maintaining the non-equilibrium state of biomolecular systems. Quantum biology is the study of such quantum aspects of living systems. In this review, we summarise the latest progress in quantum biology, including the areas of enzyme-catalysed reactions, photosynthesis, spin-dependent reactions, DNA, fluorescent proteins, and ion channels. Many of these results are expected to be fundamental building blocks towards understanding the rules of life.Leverhulme Trus

    Research observation: Desert bighorn sheep diets in northwestern Sonora, Mexico

    No full text
    We used microhistological analyses of fresh fecal pellets to determine seasonal diets of desert bighorn sheep (Ovis canadensis mexicana Merriam 1901) in northwestern Sonora, Mexico from April 1997 to December 1998. We identified 41 plant species (22 browse, 10 forbs, 5 grasses, and 4 succulents) in diets of bighorn sheep. We found no differences between diets of males and females, and diet diversity between sexes was similar (P 0.05). Diet included: browse (45.7%), forbs (32.0%), succulents (17.8%), and grasses (4.5%). The consumption of succulents was higher during spring, decreased during summer, increased in autumn, and decreased in winter. Consumption of forbs was higher during winter and summer. Globemallow (Sphaeralceae spp.), desert agaves (Agave spp.), range ratany (Krameria parvifolia Benth.), buck-wheatbrush (Eriogonum spp.), foothill palo verde (Cercidium microphyllum [Torrey] Rose Johnst.), Engelmann prickly pear (Opuntia engelmanii Salm-Dyck), desert ironwood (Olneya tesota A. Gray), and elephant tree (Bursera microphylla A. Gray) were consumed throughout the study. As biologists identify potential release sites for restoration of bighorn sheep in Mexico, studies of diet composition will provide managers with information for successful translocations.The Journal of Range Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform August 202
    corecore