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Abstract 

Birds appear to be equipped with an innate magnetic compass. One biophysical model of this sense 

relies on spin dynamics in photo-generated radical pairs in the protein cryptochrome. This study 

employs a systematic approach to predict the dependence of the compass sensitivity on the relative 

orientation of the constituent radicals for spin systems comprising up to 21 hyperfine interactions. 

Evaluating measures of compass sensitivity (anisotropy) and precision (optimality) derived from the 

singlet yield, we find the ideal relative orientations for the radical pairs consisting of the flavin anion 

(F•-) coupled with a tryptophan cation (W•+) or tyrosine radical (Y•). For the geomagnetic field, the two 

measures are found to be anti-correlated in [F•- W•+]. The angle spanned by the normals to the 

aromatic planes of the radicals is the decisive parameter determining the compass sensitivity. The 

third tryptophan of the tryptophan triad/tetrad, which has been implicated with magnetosensitive 

responses, exhibits a comparably large anisotropy, but unfavorable optimality. Its anisotropy could be 

boosted by an additional ~50 % by optimizing the relative orientation of the radicals. For a coherent 

lifetime of 1 μs, the maximal relative anisotropy of [F•- W•+] is 0.27 %. [F•- Y•] radical pairs outperform 

[F•- W•+] for most relative orientations. Furthermore, anisotropy and optimality can be simultaneously 

maximized. The entanglement decays rapidly, implicating it as a situational byproduct rather than a 

fundamental driver within the avian compass. In magnetic fields of higher intensity, the relative 

orientation of radicals in [F•- W•+] is less important than for the geomagnetic field. 

 

Introduction 
Several organisms appear to perceive the Earth’s weak magnetic field, for orientation and navigational 

purposes [1-3]. In most instances, the mechanistic basis of this sense remains ambiguous. Spin 

dynamics in spin-sensitive radical pair reactions are considered to be responsible for some of the 

magnetoreceptive traits [4, 5]. Others are discussed to rely on a classical mechanism based on 

ferromagnetic or superparamagnetic particles from, e.g., magnetite [1-3]. A magnetic compass in 

migratory songbirds is hypothesized to rely on photo-induced radical pairs generated within the flavo-

protein cryptochrome, located within the animal’s retinae [4, 6]. A similar mechanism is thought to 

apply to certain magnetosensitive phenotypes in plants [7-10], fruit flies [11], cockroaches [12] and 

newts [13]. Convincing support for this hypothesis includes the experimental demonstration that the 

photo-reduction of isolated cryptochromes from A. thaliana and D. melanogaster can be influenced 

by static magnetic fields, albeit at field strengths exceeding the geomagnetic field (~ 50 T) [14-17]. 

The effect has been attributed to the Radical Pair Mechanism (RPM), which relates reaction outcomes 
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to hyperfine-driven spin dynamics of a photo-generated radical pair within cryptochrome [4-6]. The 

hyperfine mechanism applies here despite the immobilisation of the radicals in the protein matrix, 

because an efficient charge-separation pathway exists that yields a well-separated radical pair in 

which inter-radical interactions are weak [18] compared to the dominating hyperfine interactions. In 

the mentioned in vitro experiments, this pair consists of a flavin adenine dinucleotide co-factor (FAD, 

here abbreviated as F) anion and a cation derived from the third tryptophan (W) of a highly-conserved 

electron transfer chain (the so-called tryptophan triad/tetrad [19]; see Figure 1A), i.e. [F•− W•+]. In this 

reaction, a spin-correlated radical pair is generated in the electronic singlet state (Figure 1B). The 

subsequent coherent interconversions with the corresponding triplet states arise from local hyperfine 

interactions and the Zeeman interaction with the external magnetic field. Eventually, the pair 

undergoes spin-selective reactions that discriminate the electronic spin states [4-6]. In particular, the 

singlet state can recombine to the diamagnetic ground state of the protein, whereas a structurally 

reorganized “signaling state” that initiates magnetic signal-transduction is thought to derive from all 

electronic spin states in a spin-insensitive reaction. This mechanism corresponds to the ideal of the 

RPM, which has been laid out by Kaptein & Oosterhoff and Closs and Closs in the sense that it involves 

hyperfine-induced spin sorting, spin-selective recombination and “escape” (in terms of the original 

works) of radical pairs to form the signaling state [20-22]. Here, however, the mechanism relies on 

anisotropic hyperfine interactions and does not depend on the diffusive separation of the radicals for 

magnetosensitivity. Inter-radical interactions are present, but deemed unimportant at least in first 

order, in agreement with the original RPM applications [20-22]. 

Whether the [F•− W•+] model applies in vivo is a matter of current debate [1, 4]. The controversy is 

fueled by the realization that magnetosensitivity could actually arise in a dark-state reaction. 

Therefore, an alternative hypothesis focusing on the re-oxidation of the fully reduced flavin cofactor 

by molecular oxygen in a magnetosensitive pathway has also been considered [7, 23-26]. This would 

implicate a radical pair involving the swiftly relaxing superoxide anion, i.e. [FH• O2
•−]. 

Magnetosensitivity is not expected in the framework of the RPM, but could still be realized in more 

intricate three-radical systems [27-29]. Currently, however, this alternative model still lacks the 

compelling evidence of a MFE realized under the strictly controlled conditions of an in vitro 

experiment. 

In order to function as a magnetic compass sensor, the radicals require at least some degree of 

immobilization and alignment [30-32]. If provided, anisotropic hyperfine interactions are expected to 

attribute directionality to the reaction yields. So far, an orientational response has not been observed 

in in vitro experiments on the putatively magnetosensitive reaction pathways implicated in 

magnetoreception. However, a modified cryptochrome has been suggested to exhibit an anisotropic 

MFE at 3 mT upon repairing cyclobutane pyrimidine dimer lesions in duplex DNA [33]. For a 

photolyase, an anisotropic response has even been postulated for a 40 T field. Given the reaction 

kinetics associated with DNA repair and the suppressive effect of large exchange coupling, it is dubious 

as to how this reaction could be magnetosensitive as a result of the RPM [34]. 

Motivated by the complexity involved with experimental studies, several theoretical approaches have 

aimed to further clarify the anisotropic MFEs on cryptochromes, in turn, providing predictions for 

reaction anisotropies in various scenarios [35-43]. Many investigations have addressed the 

fundamental principles and feasibility of highly simplified models for radical pair states within 

cryptochrome. However, considerably fewer studies have attempted to provide more realistic models, 

which reflect the complexity of the spin systems due to the multitude of magnetic nuclei coupled to 

the delocalized electron spin. Based on results from [39], F•− can be viewed as ideally suited for 

underpinning the directional sensitivity of cryptochrome in the presence of the geomagnetic field. This 
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is facilitated by a hyperfine coupling pattern that is dominated by the two nearly axial hyperfine 

interactions with the N5 and N10 nitrogen atoms. Large anisotropies have been predicted when F•− is 

paired with a hypothetical radical, conventionally denoted Z•; which is devoid of hyperfine interactions 

with magnetic nuclei, such as hydrogen and nitrogen [39]. The favorable magnetic attributes 

associated with this radical arise from the near-optimal magnetic properties of the flavin radical, 

combined with the asymmetric distribution of hyperfine interactions in the sense of a reference-probe 

model. Here, F•− plays the role of the ‘reference radical’ that controls the anisotropy and Z•, the ‘probe 

radical’, that couples the system to the magnetic field. Although it may be tempting to identify Z• as 

O2
•− (or dioxygen, O2) this presumption is encumbered by the fast spin relaxation of the latter, which 

impedes MFEs arising from the RPM [27]. The ascorbyl radical, Asc•−, is thought to closely replicate 

the ideal properties of Z• [39]. However, in a recent study on the cryptochrome from D. melanogaster, 

no dedicated ascorbic acid binding sites could be identified that would expedite the required rapid 

formation of [F•− Asc•−] from the photo-activated protein [44]. 

For the same coherent lifetime, the [F•− W•+] radical pair is expected to be two orders of magnitude 

lower in sensitivity to the direction of the geomagnetic field than [F•− Z•] [39]. Furthermore, the 

tryptophan opens up additional relaxation pathways that further attenuate the MFE by thermalizing 

the spin system and destroying vital coherences [37]. Despite this, it is interesting to note that level 

anti-crossing effects could give rise to spikey profiles of the directional recombination yield, if the spin 

relaxation rate was slower (by at least a factor of 10) than predicted, based on the dynamic 

characteristics of the protein [38]. This realization has attracted attention not only because the spiky 

reaction yields could underpin the remarkable accuracy of the avian compass, but more so because 

the effect is deemed truly non-trivially quantum by nature and may equip a biological system with a 

decisive advantage [38, 45-47]. While the presence of many hyperfine coupling interactions without 

common symmetry in [F•− W•+] attenuate the magnetosensitivity, it also makes the sensor more 

robust to variations in the hyperfine parameters. These arise from static inhomogeneity, which is 

expected to manifest within the ensemble of contributing sensory proteins in a realistic biological 

environment [40]. Tyrosine radicals (abbreviated as Y•) have also been implicated within 

cryptochrome photo-chemistry [19, 48-50]. However, no detailed theoretical studies of the 

magnetosensitivity of [F•− Y•] have so far been presented. 

For radical pairs with anisotropic hyperfine couplings in both radicals, the MFEs depend on the relative 

orientation of the radicals. So far, this dependency has not been investigated for realistic radical pairs 

(i.e. for systems with sufficient complexity to illuminate actual cryptochrome behaviors). Instead, 

motivated by the photocycle as informed by in vitro studies, the relevant relative orientation was 

presupposed to correspond to that of the FAD cofactor and the third tryptophan of the tryptophan 

triad/tetrad, WC [37-39]. The crystal structures of the cryptochrome from D. melanogaster (DmCry, 

PDB entry 4GU5, WC = W342, see Figure 1, [51, 52]) and cryptochrome 1 from A. thaliana (AtCry, PDB 

entry 1U3C, WC = W324, [53]) were used as templates. However, in view of recent reports, including: 

alternative electron transfer pathways in cryptochromes, structural variations induced by binding 

partners and small bound metabolites, and ambiguity surrounding the identity of the 

magnetosensitive radical pair, [54-56] a more comprehensive investigation into the dependency of 

the MFEs on the relative orientation of the radical sites appears desirable. 

Our purpose here is to propose an approach that systematically evaluates the dependence of the 
singlet yields on the relative orientations of realistic cryptochrome based radical pairs. To this end, we 
build upon a well-established methodology, which, by neglecting inter-radical interactions, allows the 
formulation of reaction yields in terms of time correlation functions of the Cartesian electron spin 
operators of the individual radicals [57-59]. Despite the aforementioned simplifications, this approach 
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can provide an adequate picture of the directional magnetosensitivity of systems involving many 
hyperfine-coupled nuclei. The general approach has previously been employed to model anisotropic 
MFEs in cryptochromes [37, 39]. Here, we extend the approach to accommodate variable relative 
orientations without requiring a repeated solution of the Liouville-von Neumann equation (or 
equivalent expressions in alternative formulations) and apply it to the [F•− W•+] and [F•− Y•] radical 
pairs whilst considering all important hyperfine-coupled nuclei. We aim to provide an answer to the 
question as to whether the small directional effects previously found for realistic models of [F•− W•+] 
are a mere consequence of an inauspicious relative orientation of the radicals selected for study, or 
reflect a more general limitation of the system. Furthermore, we hope that our systematic study of 
relative orientations might inspire an optimized cryptochrome design for magnetosensitivity with 
specific magneto-optogenetic approaches in mind, e.g. by dedicated mutations. In fact, Cry has 
previously been used as an optogenetic tool [60] and can render the activity of a system that do not 
naturally contain Cry magnetically-sensitive [61]. Additionally this research could guide endeavors to 
experimentally observe anisotropic MFEs in cryptochromes in vitro or in chemically engineered model 
compounds such as that reported in [62, 63]. Finally, our study will provide indirect insight into the 
current debate surrounding the identity of the crucial radical pair, by providing a more complete 
picture of the magnetosensitivity of [F•− W•+] and [F•− Y•]. We shall furthermore comment on the 
significance of entanglement to radical pair magnetoreception in these model radicals. 

Theory  
The spin dynamics of the radical pair shall be described in terms of the spin density operator ̂( )t . For 

rigidly immobilized radical pairs undergoing first-order singlet and triplet recombination reactions at 

the rates kS and kT, respectively, the corresponding equation of motion reads: 

 


               
ˆd ( ) ˆ ˆ ˆˆ ˆ ˆ, ( ) , ( ) , ( )
d 2 2

S T
S T

k kt
i H t P t P t

t
.  (1) 

Here, ŜP  and T̂P  are the singlet and triplet projection operators, respectively. Spin-selective reactions 

have been accounted for by the Haberkorn approach [64] and spin relaxation has been neglected [35-

37]. Our treatment, thus, applies to radical pairs that are short-lived compared to their spin relaxation 

times. Assuming that the coherent evolution is dominated by the hyperfine interactions between the 

electron and nuclear spins within each radical, in combination with the Zeeman interactions between 

the electron spins and an applied magnetic field, the Hamiltonian is of the form:  

  A B
ˆ ˆ ˆH H H    with       i , , 0

ˆ ˆˆ ˆ
i i j i j i

j

H S A I S .  (2) 

The Zeeman precession frequency is given by 0 0iB , where  i  denotes the gyromagnetic ratio of 

the electron in radical   ,i A B  and 0B  the applied magnetic field. ,i jA  is the hyperfine coupling 

tensor between the jth nuclear spin and the ith electron spin; ,î jI  and ˆ
iS  are the corresponding vector 

operators of nuclear and electron spin angular momentum. 

We assume that a radical pair is created in the electronic singlet state, i.e.  

     
1ˆ ˆ ˆˆ(0) S S S

A B

P Tr P P
z z

, (3) 

where   ,(2 1)i i jj
z I  is the dimension of the nuclear Hilbert space in radical i. The concentration-

weighted probability of finding the radical pair in the singlet state at time t is calculated from 
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    S
ˆ ˆ( ) ( )Sn t Tr P t .  (4) 

The total amount of product generated via the singlet channel once all radical pairs have recombined 

is 

 


  S S0
( )dSk n t t .  (5) 

Solving eq. (1) is a formidable task for long-lived radical pairs with a large number of hyperfine–

coupled nuclei, which is to be repeated for a multitude of magnetic field directions and, given our 

objective, for numerous relative orientations of the radicals. Here, we shall employ an approach which 

rests upon two simplifying assumptions: Firstly, we assume that the effect of inter-radical interactions 

can be neglected (such as exchange and electron-electron dipolar coupling [65]), as already assumed 

in stating eq. (2). Secondly, we postulate that the singlet and triplet reaction rates are equal. Neither 

of these assumptions strictly applies, yet, they are widely applied in this context to render the task of 

solving eq. (1) for realistic radical pairs manageable without resorting to semi-classical 

approximations. In a recent paper, Hore provides a detailed assessment of these approximations in 

the context of cryptochrome [66]. For the parameter ranges typically expected, these omissions are 

considered tolerable. We will further comment on these assumptions in the discussion. 

In the limit that kS = kT = k and for commuting AĤ and BĤ , the singlet probability can be expressed in 

terms of the correlation functions associated with the Cartesian spin operators of the individual 

radicals,  

      

       
ˆ ˆ( )

, , , , ,

1 1ˆ ˆ ˆ ˆ( ) ( ) i iiH t iH ti
i i i i

i i

T t Tr S S t Tr S e S e
z z

,  (6) 

which, for  , { , , }x y z , assemble the spin correlation tensors ( )( )i tT  [57]. Here, , ( )iS t  is the spin 

operator in the Heisenberg picture. Specifically, using   
1 ˆ ˆˆ
4

S A BP S S  and the above-stated 

assumptions in eq. (1), one finds that 

  S( ) ( )exp( )Sn t p t kt ,  (7) 

where the singlet probability ( )Sp t is given by 

    
 

       ( )
, ,

,

1 1ˆ ˆ( ) ( ; 0) ( ) ( )
4

A B
S S S

A B

p t Tr P P t k T t T t
z z

.  (8) 

All time dependent quantities here relate to the k = 0 scenario; the reaction enters in the form of an 

exponential scaling of eq. (7). Eq. (8) allows the calculation of recombination yields for reasonably 

complex radical pairs, because the problem is reduced to the independent evaluation of the spin 

correlation tensors for the individual radicals, i.e. two independent calculations. Yet, it does not 

provide an efficient pathway leading to the evaluation of relative radical orientations, because, as it 

stands, the spin correlation tensor of the reoriented radical ought to be re-calculated for every 

orientation. In the Appendix, we show that this, however, is not required, as 

        ( ) 1 ( ) 1 1
0 , 0 ,; , ; ,i i

i j i jt B t BT RA R RT R A R .  (9) 
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Here,  ( )
0; ,i

jt BT A  denotes the spin correlation tensor for a given magnetic field, 0B , and set of 

hyperfine tensor parameters, jA . R is a rotation matrix and   ( ) 1
0; ,i

jt BT R A R  the spin correlation 

tensor of the radical with rotated orientation. In words, eq. (9) suggests that instead of rotating the 

hyperfine tensors, the spin correlation tensors could be reoriented if the magnetic field is also 

simultaneously counter-rotated. In combination with the evaluation of spin correlation tensors for a 

grid of magnetic field orientations, this provides an efficient approach to calculate ( )Sp t  for cases that 

the evaluation of the time-dependence of ( )iT  is the limiting factor, i.e. for radicals with large numbers 

of hyperfine terms and/or if their lifetimes are considered long. 

To assess entanglement of the electron spins, we shall reconstruct the electronic density operator,

̂ ( )el t , from the spin correlation tensors. To this end, we express ̂( )t  in a complete, orthogonal 

operator basis  ̂i  comprising the identity 1̂ , the Cartesian spin operators ,îS , and their bi-linear 

combinations for radicals A and B  , ,
ˆ ˆ

A BS S : 

   


  
16

1

ˆˆ ˆ( ) ( ) ( )el n i i
i

t Tr t c t .  (10) 

Here, nTr  denotes the trace over nuclear degrees of freedom and the ( )ic t s are time-dependent 

expansion coefficients. For the singlet initial configuration, the only non-zero expansion coefficients 

are associated with 1̂  and the bilinear terms,  , ,
ˆ ˆ

A BS S . For the latter we find:  

 
 

    


    , ,
, ,

1 ˆ ˆ( ) ( ) ( ) ( ) ( )
4

A B
i A B

x y z

c t S S t T t T t Q t    for       , ,
ˆ ˆ ˆ

i A BS S .  (11) 

Here we have assumed k = 0; the decay can always be reinstated by multiplying with exp( )kt . The 

expansion coefficient associated with 1̂  is ¼.  We will use the expansion eq. (11) to assess the 

entanglement of the electron spins from the eigenvalues of the partial transpose of the first radical, 

̂ ( )AT
el t  [67, 68]. The partial transpose can be calculated from eq. (10) by using the fact that ˆ

yS  is 

antisymmetric to transposition, whereas the real operators are symmetric. Thus, by exchanging the 

sign of all expansion coefficients of ,
ˆ

A yS  containing operators, we obtain: 

 

      

   


 



   
   
   
   
   

  

1

4

1

4

1

4

1

4

0

0

0

0

ˆ ( )

zz zx xz xx yy zy yz xy yz

zz yy xx xz xy yx yz

zz zx zy

zz

AT
el

Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q
i

Q Q Q

Q

t   (12) 

The matrix elements that are not given explicitly follow from the Hermiticity of ̂ ( )AT
el t . Based on the 

Peres–Horodecki criterion, the partial transpose is positive if the density matrix is separable [67, 68]. 

For 2×2-systems like the one studied here, entangled states are conversely indicated by negative 

eigenvalues of ̂ ( )AT
el t . This observation motivates the definition of negativity as a measure of quantum 

entanglement [69]:  

 
 




ˆ( )
2

i i

el
i

,  (13) 



7 
 

where the i s are the eigenvalues of ̂ ( )AT
el t . ̂( )el equals the absolute sum of the negative 

eigenvalues. It is an entanglement monotone. The evaluation of ̂ ( )AT
el t  from spin correlation tensors 

will allow us to evaluate negativities of large spin systems. It is interesting to note that mixtures of 

singlet and unpolarized triplet states are separable unless they contain more than a ¾-share of the 

singlet state [70]. Furthermore, the negativity of a reaction stemming from the unpolarized triplet 

configuration can be calculated from that given for the singlet configuration above as   , ,

1 ˆˆ ˆ
2

A AT T
el T el SI

. Here, the additional subscripts label the initial spin state. Consequently, for the triplet-born radical 

pair the negativity is        1 1
, ,2 2

1
ˆ( )

2
T el S i S i

i

. 

To quantify ST-coherences [71], we use the l1-norm measure 

  
 



 
0, { , , , }

ˆ ˆ( )el el
i j S T T T
i j

C i j ,  (14) 

with the electronic density matrix ̂ ( )el t calculated from the spin correlation tensors according to eq. 

(10). 

 

Methods 
We have numerically evaluated the spin correlation tensors for the radical cation of tryptophan (9 

nuclear spins), the oxyl radical of tyrosine (7 nuclear spins) and the flavin anion radical (12 nuclear 

spins) on an equidistant time grid,  nt n t . In Figure 2, the chemical structures and hyperfine 

interactions of the studied radicals are shown in their respective molecular axes systems (defined in 

Figure S4 in the SI); hyperfine parameters are summarized in the Supporting Information (Tables S1 – 

S3). The geomagnetic field intensity was taken to be 50 T with its orientation varied on a geodesic 

sphere resulting from the tessellation of an icosahedron (10242 orientations forming 20480 triangular 

faces). As the MFE is invariant to inversion, practically only half the number of orientations 

corresponding to a hemisphere require evaluation. A rate constant of k = 106 s-1 was assumed in 

agreement with the order of magnitude of the rate constants observed in in vitro experiments on the 

isolated proteins [14, 15]. The maximal time was 25 k-1 and 215 time steps were used (Δt ≈ 0.76 ns). In 

order to evaluate the spin correlation functions, we re-express eq. (6) in the eigenbasis of the 

Hamiltonian as 

  



  ( )
,

, 1
0

( )

ab

N
i n

ab ab
a b
A

T n t A B ,  (15) 

where   , ,
ˆ ˆ

ab i iA a S b b S a ,    exp( ( ) )ab b aB i t  with ωa denoting the angular frequency 

associated with the ath eigenstate a , and N is the dimension of the Hilbert space. Eq. (15) requires 

an element-wise vector multiplication and a sum reduction in every time marching step. We use CUDA 

to efficiently implement this process on GPUs. On our hardware (NVidia Tesla K80 GPU and Intel Xeon 

CPU E5-2640 v3 @ 2.60GHz) this affords a 6.5-time speedup over our CPU implementation for the 

flavin anion radical. 
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We study the relative orientional dependence of the two radicals by rotating the flavin radical anion 

with respect to the other. Sparing the intensive time-propagation step, the spin correlation tensor of 

the rotated radical is evaluated from eq. (9), i.e. by transforming   ( ) 1
0 ,; ,B

B jt BT R A . As this quantity 

refers to the counter-rotated magnetic field 1
0BR , it usually has to be evaluated by interpolation from 

the orientations available on the constructed spherical grid. For the calculation of 0( )S B , this process 

can be considerably sped up by reformulating eq. (5) as 

 

   

       

 







   

   

  







( ) ( )
0 0 ,

0

( ) ( )
0 ,

0

9

. 0 0,
. 1

1
( ) exp( ) ( ): ; , d

4

1
exp( ) ( ) ; , d

4

1
( , )

4

A B T T
S B j

TA B T
B j

T
l ml m

l m

B k kt t t B t

k kt vec t vec t B t

B B

T RT R A R

T R R T R A

R R X R

,  (16) 

where . 0 0( , )T
l m B BX R  denotes a 9×9-matrix defined by 

 


 
( ) ( )

. 0 0 0 0

0

( , ) exp( )vec( ( ; )) vec( ( ; )) dT A T B T
l m l mB B k kt t B t B tX R T R T R .  (17) 

Here, vec denotes the vectorization of a matrix. This approach is significantly more efficient for 

calculating 0( )S B , because it interchanges the time integration and the interpolation. It necessitates 

81 interpolations of the components of . 0 0( , )T
l m B BX R  instead of a separate interpolation for every t-

value, i.e. here, 215+1 interpolations. 

We have systematically scanned all three Euler angles that define the relative orientation of the 

radicals. For this extensive search, we have used a linear interpolation on the triangular faces of the 

spherical grid expressed in barycentric coordinates. The intersection of 0
TBR  with the mesh triangles 

was calculated using the Möller–Trumbore algorithm [72]. For more detailed calculations on individual 

orientations we have employed radial basis functions on the sub-grids of 11 or 12 points that cover 

the triangle intersecting 0
TBR  and one layer of adjacent triangles. Gaussian basis functions and a 

distance function based on the great circle distance were used. The MFEs calculated from these two 

approaches differed only in the fifth significant digit. 

As we pre-calculate the spin correlations for a hemi-spherical grid of orientations, the calculation of 

MFEs due to reoriented radicals occasionally requires   ( )
0 ,; ,B T

B jt BT R A  for orientations 0
TBR outside 

of the covered hemisphere. These missing tensors can be reconstructed from the tensors for the 

inverted field,  0
TBR  as follows:  

             ( ) ( ) ( )
0 , 0 , 0 ,; , ; , ; ,

T
i i i

i j i j i jt B t B t BT A T A T A .  (18) 

Here, the first identity results from the fact that the Hamiltonian, eq. (2), is symmetric under time-

reversal and simultaneous inversion of the magnetic field. The second equality results from the fact 

that for the spin correlation tensors, time-reversal is tantamount to transposition, which is evident 

from the definition in eq. (6). Note that, unlike the singlet yield, the spin correlation tensors are not 

symmetric under field inversion. 
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Results 
We have used the methodology introduced above to evaluate the singlet yield for a range of radical 

pairs involving the flavin anion radical (F), the tryptophan radical cation (W+) and the neutral 

tyrosine radical (Y). Additionally, inspired by previous works [39], we considered scenarios in which 

these radicals are combined with a hypothetical radical, conventionally denoted Z, that is devoid of 

hyperfine-coupled nuclear spins. The largest and most significant hyperfine coupling constants have 

been included (see Figure 2): 12 coupled nuclei for F, 9 for W+, and 7 for Y. The hyperfine tensors, 

which are listed in the SI (Tables S1 to S3), were calculated by density functional theory using the 

UB3LYP/6-31+G(d,p)//UB3LYP/EPR-III protocol in Gaussian 16 [73]. The (isotropic) hyperfine 

interactions of the methylene groups adjacent to the aromatic rings of the radicals (β-protons) depend 

on the dihedral angle that the C-H-bonds make with the normal to the aromatic plane (as described 

in good approximation by the Heller-McConnell equation) [74]. For F this dihedral was fixed to yield 

the conformer as found for the FAD cofactor in the crystal structure of the Drosophila melanogaster 

cryptochrome (DmCry, PDB entry 4GU5; dihedral angle CD1-CG-CB-CA: -74.9°, [51, 52]). For W+ and 

Y representative rotamers were chosen; the arguments underpinning this selection process are 

detailed in the SI. For W+, the chosen conformer resembled WC in DmCry (with CA-CB-CG-CD1 dihedral 

angle of 103.7°).  

In order to quantify the effectiveness of a radical pair to act as a magnetic compass we introduce two 

metrics: the absolute and relative anisotropy, ΔS and ΓS, respectively. They are defined by 

 
  

       0 0
,,

max ( ( , )) min ( ( , ))S S SB B    and   


 


S
S

S

,  (19) 

where θ and φ evaluate all directions of the magnetic field vector in the molecular frame of the radical 

pair and S  denotes the mean yield. 

Truncated radical pairs at the geomagnetic field (50 T) 
The radical pairs involving the hypothetical Z in combination with F and W+ have already been 

addressed in an earlier study [39]. For comparison, we shall briefly summarize our findings in relation 

to these previous results. Our models differ from those of [39] as they consider more hyperfine-

coupled nuclear spins, both in F and W+. Additionally, they include a different choice of sidechain 

conformations, which predominantly impact the β-hyperfine coupling constants. For [F Z], we find 

ΔS = 0.147 (ΓS = 47.8 %), which is in close agreement with the previous results (ΔS = 0.146). This 

observation once again reinforces the interpretation that in F, the spin dynamics are governed by 

the two dominant, nearly axial hyperfine interactions at N5 and N10 and are widely insensitive to the 

remaining hyperfine terms. On the other hand, for [Z W+], we obtain an anisotropy of ΔS = 0.030 (ΓS 

= 11.2 %), which is markedly smaller by more than a factor of two than that reported in [39] (ΔS = 

0.062). The reduced compass sensitivity of the W+-containing radical pairs has been attributed to the 

many hyperfine interactions within W+ that are of comparable size, but lack common symmetries. 

Our results suggest that the additional hyperfine interactions considered here (H5 and Hβ2 have been 

included in addition) perpetuate this trend. It is noteworthy that the shape of the anisotropic 

responses remain largely unaltered. Here, the anisotropies of both, [F Z] and [Z W+], are found to 

be of the functional form        0 0,0 0,0 2,0 2,0( ( , )) ( , ) ( , )S B c Y c Y , with the coefficients of the next-

largest spherical harmonics,  2, 1( , )Y , contributing less than one thousandth of the  2,0( , )Y -
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contribution (as assessed by the absolute values squared of the expansion coefficients ,k lc ; see Figure 

S3 in the SI). Note, however, that this simple dependence on the orientation of the radical pair does 

not apply for all magnetic field intensities, e.g. for [Z W+] at B0 = 1 mT, a markedly more complex 

pattern ensues. 

We have also considered the [Z Y] radical pair, where Y refers to the tyrosine phenolic radical and Z 

the “free electron” as above. The magnetosensitivity of Y-based radical pairs has not previously been 

considered in the context of magnetoreception. As illustrated in Figure 2, the hyperfine structure of 

Y differs from that of F or W+. It is characterized by a greater simplicity, fewer coupled nuclear spins 

and the lack of aromatic nitrogen hyperfine couplings with characteristic p-orbital-like shape, as 

observed for N5 and N10 in F and N1 in W+. The proton hyperfine interactions are the dominant 

carriers of hyperfine anisotropy. Interestingly, on its own, the Y hyperfine structure does not evoke 

large anisotropies of the MFE. We find a small ΔS = 0.014 (ΓS = 5.3 %), which is smaller than that of 

[Z W+] by a factor of approximately 2. The shape of the anisotropy, which is shown in Figure S3 in the 

SI, is also different from the patterns displayed above. A cross-shaped figure results for [Z Y] from 

larger  2, 2( , )Y contributions in the spherical harmonic expansion besides the dominant  2,0( , )Y  

(c0,0
2/|c2,2|2 ~ 8). 

Flavin–tryptophan radical pairs with variable relative orientation in the geomagnetic 

field 
Following the approach as outlined above, we have evaluated the singlet anisotropies of [F•− W•+] as 

a function of the relative orientations of the two radicals. To this end, the flavin radical anion was 

rotated relative to the molecular frame of the radical pair, which was taken to coincide with the 

molecular axis system of tryptophan as indicated in Figure S1 or 2. The rotation was parametrized by 

the three Euler angles α, β, γ in the zxz-convention. As multiple, ambiguous conventions are in use, 

we make the definition of the rotation matrix available in terms of its constituent Euler angles in 

Appendix 2 (cf. Figure S2). Here, we have systematically explored the relative orientations by 

evaluating the singlet anisotropies on a regular grid covering 120 points each in α and γ ∈ [0, 2π), and 

60 points in β ∈ [0, π), i.e. the angular resolution was 3°. The evaluation of the resulting 864,000 

relative orientations is made possible for large spin systems by the algorithm described above, in 

particular eqs. (9) and (16). We have opted to rotate F•−, because the form of the hyperfine tensors 

arising from the two dominant nitrogens (N5 and N10), promised a minor dependency on the angles 

α and γ, for which the rotation occurs about the principal axis of these tensors. 

Heat maps of the relative singlet yield anisotropy, S, at 50 T as a function of relative orientation can 

be seen in Figure 3. The highest relative anisotropy was S = 0.27 %, attained for the Euler angles 

α = 86°, β = 5° and γ = 107°. The corresponding S amounts to 7.4×10-4. The heat maps reveal that 
variation in anisotropy are predominantly moderated by the β orientational degree of freedom, which 
characterizes the tilt of the aromatic ring planes in F•− and W•+. Large anisotropies are generally 
associated with close to parallel or antiparallel orientations of the perpendiculars to these ring planes. 
The α and γ degree of freedom induce only minor modulations of this dominating motif. The maximal 

standard deviation of the S for a given β, but variable α and γ, is 1.2×10-4, which corresponds to only 

8.0 % of the mean S. In particular, the dependence on γ is virtually absent.  The minimal relative 

anisotropy amounts to S = 0.091 % and is associated with the orientation α = 158°, β = 107° and γ = 

156°. An analysis based on ΔS, instead of S, portrays a similar picture (heat maps of S are provided 
in Figure S4). The maximal ΔS = 7.4×10-4 is found at α = 84°, β = 4° and γ = 109°, i.e. for a relative 

orientation close to the optimal orientation for S. 
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We have also used the approach to explicitly evaluate the singlet anisotropy for the relative 

orientations as found for the tryptophan triad/tetrad in published crystal structures. WC is of particular 

interest as it forms part of the magnetosensitive radical pair identified through in vitro experiments 

on the purified cryptochromes of A. thaliana and D. melanogaster. For the relative orientation of the 

radicals, as found for the FAD cofactor and Trp-342 (WC) in the crystal structure of DmCry, we find ΔS 

= 4.9×10-4 and ΓS = 0.18 %. These values, which have here been evaluated for the radical pair with 21 

hyperfine interactions included, are smaller than those provided for 14 hyperfine interactions in an 

earlier study (ΔS = 0.0014) [39]. This once again corroborates the observation that for [F•− W•+] the 

compass sensitivity deteriorates with the addition of more nuclei, in particular in W•+. It is noteworthy 

that the shape of the anisotropic part of the singlet yield as a function of orientation found here (see 

Figure S5) closely resembles that of [F•− Z•] and, thus, differs from that in [39]. This is not unexpected, 

as the singlet yield anisotropy of the intact radical pair, [F•− W•+], appears to be an approximate 

composite of the patterns for [F•− Z•] and [Z• W•+]. As the latter here is additionally attenuated by the 

inclusion of additional hyperfine interactions, an anisotropy pattern more closely resembling [F•− Z•] 

is obtained, i.e. the effect of N1 from W•+ is no longer obvious. 

Comparing [F•− WC
•+] with (hypothetical) radical pairs involving any other of the 16 tryptophan 

residues in DmCry, we find relative anisotropies ranging from 0.1 % to 0.22 % (see Table S4). While a 

functional relevance of the majority of these alternative radical pairs is obviously questionable, this 

comparison stresses that the radical pair with WC is, in fact, among the most sensitive radical pairs. It 

is only outclassed by the radical pairs with W314 and W353, for which ΓS = 0.22 %. 

We have also compared the tryptophans of the triad/tetrad for the established crystal structures of 

cryptochromes with bound flavin and a homology model of cryptochrome 4 from the European Robin 

[75, 76]. The magnetic field effect anisotropies have been summarized in Table 1. Subsequent 

comparison of the four/three tryptophan orientations yields the following observations: For the 

systems with a tryptophan tetrad, the anisotropy is always maximal for WC. The largest anisotropy is 

seen for WC in DmCry. For the animal-like Cryptochrome from Chlamydomonas reinhardtii (PDB ID: 

5ZM0) [77] and the model of the avian cryptochrome 4 [75, 76], a smaller anisotropy of 0.16 % and 

0.15 % is found, respectively. All other relative orientations yield anisotropies of the order of 0.1 %. 

Likewise, for the plant cryptochrome 1 from A. thaliana, a relative anisotropy of approximately 0.1 % 

is predicted for all positions, including the terminal WC, both with and without bound ATP analogue. 

Flavin–tyrosine radical pairs with variable relative orientation in the geomagnetic field 
We have studied the orientational dependence of the anisotropy for radical pairs comprising the flavin 

anion radical in combination with the neutral, i.e. deprotonated, tyrosine radical. The approach 

described above was followed, whereby the dominant 7 hyperfine interactions of Y• were taken into 

account. Heat maps of the orientational dependence are shown in Figure 4. Relative anisotropies 

range from ΓS = 0.18 % to 0.96 %. Different from [F•− W•+], here, the largest anisotropies are associated 

with β ~ 90°, i.e. the perpendicular orientation of the aromatic ring planes. The global maximum of ΓS 

is observed for α = 179°, β = 88° and γ = 174°. The corresponding anisotropy pattern is shown in Figure 

S6; it reveals a more vivid, although not more spiky, pattern than those found for [F•− W•+] above. As 

for the tryptophan-based system, the anisotropy is hardly dependent on γ and varies little with α. 

Furthermore, just as above, the absolute and the relative anisotropies show qualitatively the same 

orientational dependence. ΔS ranges from 4.6×10-4 to 2.5×10-3. In general, the larger anisotropies 

suggests that [F•− Y•] might be better versed to underpin a compass sense than [F•− W•+]. In particular, 

for [F•− Y•] the maximal relative anisotropy is larger by a factor of 3.6 than for [F•− W•+] and even the 

least sensitive relative orientations are predicted to show a compass sensitivity comparable to that of 

the rather performant [F•− WC
•+] in DmCry. 
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Radical pairs in increased magnetic fields 
With future experimental studies and technological exploitation in mind, we have also explored the 

orientational dependence of the relative anisotropy for [F•− W•+] in elevated magnetic fields of 

intensity 1 mT and 5 mT. Under these artificial conditions, the relative anisotropy can be substantial: 

We find a maximal anisotropy of ΓS = 9.9 % and 4.2 % for B0 = 1 mT and 5 mT respectively. Interestingly, 

the anisotropy is larger at 1 mT than at 5 mT. The heat maps of the orientational dependence are 

summarized in Figures S7 and S8 in the SI. For B0 = 1 mT, the anisotropy peaks for β ~ 90°, thereby 

revealing an optimal relative orientation that is practically reversed from that found at 50 μT. For 5 mT, 

the optimum is again realized for β ~ 0° or β ~ 180°. Furthermore, for both 1 mT and 5 mT, the spread 

of anisotropies brought about by different relative orientations is significantly smaller than that found 

in the geomagnetic field. For example, for B0 = 1 mT, the minimal relative anisotropy amounts to as 

much as 8.0 %, which is only 20 % smaller than the maximal anisotropy at this field intensity. In 

comparison, for B0 = 50 μT, the minimal and maximal value are apart by a factor of 3. 

 

Discussion 

The model and its limitations 
For magnetoreception as an evolutionary derived trait, a high level of inherent optimization can be 

assumed. This suggests that vital magnetoreceptive phenotypes, such as the magnetic compass of 

migratory birds have evolved to maximize the sensitivity of the process. If we accept this paradigm, 

we may hope to reveal aspects of the biological mechanism by maximizing the predicted anisotropy 

in suitable models. Clearly, tenable insights will rely on the adequacy of these models, which should 

cater for the complexity as found in realistic systems. In particular, this requires that simulations 

consider a realistic number of hyperfine coupled nuclei and adequate parameters. As the Hilbert space 

dimension grows geometrically with the number of nuclear spins, a rigorous model quickly becomes 

unpractical. This necessitates simplifying assumptions such as those employed here. The current 

approach facilitates the fast evaluation of all relative orientations for complex spin systems by 

assuming the absence of inter-radical interactions, as well as identical lifetimes for the singlet and 

triplet state. While it is clear that these assumptions do not apply in reality, deviations from this ideal 

are considered small enough to avoid qualitatively different results [39, 66]. As a consequence, this 

approximate approach has been widely employed to calculate reaction yields [37, 39, 58, 59, 78]. 

Note, however, that this does not necessarily apply to other spectroscopic techniques such as solid-

state CIDNP, which requires the presence of additional, symmetry-breaking interactions to account 

for the accumulation of nuclear spin polarisation [79, 80].  In general, when considering unequal 

reaction rate constants, it is deemed adequate, except when the triplet and singlet channels are 

characterized by vastly (by an order of magnitude or more) different rates. While such scenarios have 

been considered, they appear to be rather exotic [41]. The effects of inter-radical interactions could 

be small in the actual sensor [65]. We have also assumed that the spin relaxation rates are smaller 

than the reaction rates, while detailed simulations of the relaxation behavior suggest that they might 

be comparable [37]. Again, this is not expected to change the conclusions, but one needs to keep in 

mind that in reality the effects will likely be smaller. Detailed discussions of the assumptions made 

and their consequences can be seen in [39] and more recently in [66]. Semiclassical approximations 

have been suggested as alternative means to approach large spin systems for symmetric and 

asymmetric reactivity [57, 81, 82]. However, while these formulations do not suffer from the large 

dimensionality issues, they could overlook truly quantum effects [38]. Furthermore, for the task of 

evaluating many relative orientations, the approach here is in fact preferred. It does not require the 
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repeated Monte Carlo sampling of the system trajectories, but can assess different orientations 

quickly, through the single pre-calculation of . 0 0( , )T
l m B BX R . 

Orientational magnetosensitivity in [F•− W•+] 
The arguably most popular and currently best developed model of the cryptochrome compass 

assumes a magnetosensitive radical pair, comprising of a flavin anion radical and a tryptophan radical 

cation [4]. For this system, realistic, large-scale model calculations have only been made available for 

selected relative orientations of the radicals, i.e. those found for WC in DmCry [38, 39] and AtCry [37]. 

Surprisingly, only modest singlet yield anisotropies have been found for these configurations, 

considering the remarkable performance of the avian compass. This raises the question, whether this 

is an unfortunate consequence of the relative orientation of the radical sites, which could be different 

in the currently unidentified magnetic sensor protein in its native environment, or perhaps, an intrinsic 

deficit of the [F•− W•+] system. Our approach allows this question to be systematically addressed for 

radical pairs with a realistic hyperfine structure for the first time. 

For our model of [F•− W•+] at 50 μT, we find relative anisotropies ranging from 0.09 % to 0.27 % 

depending on the orientation of the two radicals. Under the same condition, an anisotropy of 0.18 % 

is found for WC in DmCry. Thus, in principle, the compass sensitivity could be enhanced relative to that 

of WC by a factor of 1.5. While this is a fair improvement, the upper limit of 0.27 % is still small 

compared to alternative models such as the hypothetical [F•− Z•] (ΓS = 47.8 %) or the [F•− Asc•−] radical 

pair, for which the flavin radical is paired with the ascorbyl radical anion (ΓS = 26.7 %). While this is 

true, one must bear in mind that no clear-cut experimental evidence has so far been realized for any 

radical pair other than [F•− W•+] in isolated cryptochromes under well-defined experimental conditions 

[14-16]. Superoxide has been suggested to act as Z•, however, its physical properties are unlikely to 

comply with the requirement of slow spin relaxation times when compared to the Larmor precession 

frequency of an electron spin in the geomagnetic field [27]. This limitation could in principle be 

overcome by a three-spin system subject to the chemical Zeno effect [28, 29]. Yet, this is an entirely 

speculative hypothesis that at the moment lacks even provisional experimental support and is also 

beyond the method employed here. As for [F•− Asc•−], a recent study could not identify dedicated 

interaction sites for the binding of AscH− to cryptochrome, which would be required to facilitate the 

efficient formation of the radical pair from the initially formed [F•− W•+] prior to spin relaxation [44]. 

With respect to the tryptophan residues available in DmCry, the best realized orientation is that of 

W353, which gave rise to a relative anisotropy of 0.22 % (see Table S4 in the Supporting Information). 

Although hypothetical, it is still interesting to note that alternative electron transfer pathways have 

often been observed in cryptochromes [54-56]. Thus, alternative tryptophans should not be excluded 

a priori. However, no experimental evidence for the involvement of W353 or an equivalent site seems 

to have been documented. More generally, for B0= 50 μT, large anisotropies appear to tentatively 

relate to larger mean singlet yields S . In particular, when combining all tested relative 

orientations, for S  > 0.256 the relative anisotropy grows approximately linearly with S . This 

suggests that the large compass sensitivity observed here is tantamount to slower relaxation of the 

singlet population to it statistical expectation of ¼. This is not surprising insofar, as weak magnetic 

fields can only give rise to discernible effects on radical pairs if the spin systems are out of equilibrium. 

We are currently unaware what magnitudes of MFEs are necessary to constitute a compass sense. 

Despite this, if we assume for the moment that the directionality of the MFEs in [F•− W•+] is sufficient, 

the following observations can be made: Based on the currently available structures of cryptochromes 

with a tryptophan tetrad, WC appears to be more apt to induce directional MFEs than WD, WA or WB. 
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This is reassuring insofar as MFEs on isolated cryptochromes have only been observed for the radical 

pair involving WC. The pair with WD appears to be separated by too large a distance to facilitate MFEs, 

i.e. its slow spin selective charge recombination reaction cannot compete with decoherence 

processes, whereby any MFEs are likely abolished [14, 83, 84]. For the close radical pairs with WA and 

WB, on the other hand, the large exchange interaction and short lifetimes are deemed to suppress the 

magnetosensitivity [65]. It is also remarkable that the exceptional directional sensitivity of WC appears 

to be peculiar to cryptochromes with a tryptophan tetrad. For the Arabidopsis cryptochrome 1, on the 

other hand, WC only corresponds to modest orientational sensitivity, comparable to the predictions 

for WA and WB. As a directional response to magnetic fields does not fulfil a known function in plants, 

this could be interpreted as an outcome of the lack of a corresponding evolutionary incentive. Note, 

however, that while WC is strong in cryptochromes with a tetrad, the orientation of WC in the 

homology model for the avian cryptochrome 4 [75, 76] is less optimal than that extracted from the 

crystal structure of the Drosophila cryptochrome. This observation could inspire a variety of 

interpretations: the homology model or the current approach may have limited predictive power, 

another driver must be considered, anisotropy is an inappropriate measure of sensitivity or that a 

different radical pair is at play, to name but a few. Much additional theoretical and experimental 

research will be required to start addressing these points.  

Various measures have been employed to assess directional MFEs. Here, we used the relative and the 

absolute anisotropy as defined in eq. (19). As the signal transduction and amplification mechanisms 

are unknown, it is unclear which is more indicative. As far as the relative orientation is concerned, ΔS 

and ΓS provide essentially conforming conclusions and this distinction does not appear to be relevant. 

However, two recent works argue that the spikiness of the anisotropy pattern might be more relevant 

than the absolute size of the effect, as it could provide a pathway to, and rationale for, the remarkable 

acuity of the avian compass [38, 41]. Solov’yov and co-workers have suggested an alternative 

measure, referred to as optimality, which quantifies spikiness [41]. Defined here by 
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this measure is only non-zero for spiky profiles, i.e. those for which the mean yield S deviates from 

the average of the minimal and maximal yield,  
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publication used a slightly different definition for ΓS). Analyzing our data with respect to eq. (20), we 

have to conclude that in [F•− W•+] anisotropy and optimality are mutually exclusive (see Figure S9). In 

particular, we find that optimality peaks for β ~ 90°, a region for which the anisotropy is always low. 

Conversely, large anisotropies appear to favor simple shapes. It is also noteworthy that the 

dependence of optimality on γ and, in particular, α is more pronounced than for the anisotropy. The 

anti-correlation of optimality and anisotropy is an interesting finding in view of WC’s putative role in 

magnetoreception, as this system produces the worst optimality among the tryptophans of the 

tryptophan tetrad. If WC indeed constitutes the magnetosensitive radical pair, this could infer that 

optimality is either an inferior metric, or perhaps that a compromise between these two metrics is 

necessary for optimizing the compass. On the other hand, if optimality is key, the radical pair involving 

WD would be almost optimum with respect to β and γ, as is seen from the location of the top relative 

orientation for optimality in Figure S9 (maximal optimality realized for α = -27°, β = 93°, γ = 0°). This 

would, however require that the charge recombination proceeds on a timescale comparable to the 

spin evolution, which has been questioned [14, 83, 84]. In any case, it is interesting to observe that 

anisotropy and optimality as mediators of compass sensitivity favor orthogonally different [F•− W•+] 
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radical pairs. This suggests that a biologically motivated assessment of the best metric, which is 

unfortunately not yet available, could guide the search for the true magnetoreceptor. 

In addition to impacting upon the attainable MFEs, the relative orientation of the radicals is also 

expected to influence the electron transfer rates, because it modulates the electronic coupling of the 

involved diabatic states [85]. However, this does not necessarily allow direct conclusions regarding 

the observed electron transfer rates, as the relevant tunnelling processes are often controlled by 

coupling fluctuations instead of the average coupling, in particular, if symmetry implied a weak 

coupling at the average geometry [86]. Indeed, a recent study of charge migration within the 

tryptophan tetrad of an animal (6-4) photolyase has found no clear relationship of electronic coupling 

fluctuations and the relative orientations of the involved tryptophan residues, while the edge-to-edge 

distance was identified as decisive [83]. Thus, while orientational effects on electron transfer exist, 

they do not a priori limit the configurations which could practically be realized. 

Orientational magnetosensitivity in [F•− Y•] 
Long-lived tyrosine radicals have been observed in several studies of cryptochromes. Y• was identified 
as a successor of W•+ in the photo-activation of cryptochrome 1a of the garden warbler [87], 
cryptochrome 1 from Arabidopsis thaliana [88], and the animal-like cryptochrome from C. reinhardtii 
[19]. In the latter, the radicalized tyrosine (Y373) extends the protein’s tryptophan triad and appears 
to be essential for the photo-reduction in order to yield the fully reduced FAD– [19]. A similar extension 
of a tryptophan tetrad is seen in the predicted structure of cryptochrome 4 from the European robin 
[75].  While the formation of Y• appears commonplace in cryptochromes, no MFEs on reaction yields 
have so far been associated with Y•-containing radical pairs. Given the larger magnetic anisotropies 
that we predict here, it is nonetheless tempting to speculate about this possibility. This conjecture is 
further fueled by the fact that spin polarized EPR spectra of photo-generated [F•− Y•] have been 
observed in C. reinhardtii, thereby demonstrating that spin coherent effects are in principle feasible 
in these radical pairs in cryptochromes [19]. 
The [F•− Y•] radical pair offers many virtues; first and foremost, its anisotropy is predicted to markedly 
exceed that of [F•− W•+]. Relative anisotropies approaching 1 % have been found here, which compares 
favorably to the maximal anisotropy of [F•− W•+] of 0.27 %. The larger anisotropy appears to be a 
consequence of the weaker intrinsic anisotropy of Y• that puts [F•− Y•] closer to the ideal [F•− Z•]. This 
is also evident from the smaller anisotropy of [Z• Y•] compared to [Z• W•+]. Yet, while [F•− Y•] appears 
to be a better choice than [F•− W•+], its anisotropy is still small relative to [F•− Z•]. However, as the 
latter has to be viewed as a hypothetical entity, [F•− Y•] might still be the optimal radical pair assembled 
from redox-active residues in proteins. Secondly, unlike for [F•− W•+], anisotropy and optimality, i.e. 
the spikiness of the anisotropy pattern, are correlated for [F•− Y•]. Both measures are maximal for a 
relative orientation of the radicals with approximately perpendicular orientation of the aromatic ring 
planes. Taken together, our findings could provide a significant evolutionary driver in favor of [F•− Z•], 
which warrants further studies into this direction. Using the known crystal structure of DmCry as a 
template [51, 52], the residues Y317, Y319 and Y328 appear the most auspicious candidates for future 
studies of this kind. These residues give rise to the largest anisotropies amongst all tyrosines in DmCry, 
while also being located close to the flavin co-factor, thereby facilitating the necessary charge 
recombination reaction that could be part of alternative electron transfer pathways. For Y319, the 
adjacent H138 could facilitate the electron transfer, e.g. from the adjacent W413, by deprotonating 
the tyrosine. Indeed, there appears to be some evidence that, at least in plants, in vivo electron 
transfer reactions along pathways not involving the tryptophan tetrad could be relevant [54, 55]. 
Much of this evidence, however, is from Cry variants where members of the triad have been mutated. 
The significance of these findings for the native protein is currently unclear. 
Obviously, the generation of the hypothesised tyrosine-based radical pairs required that in vivo the 
electron transfer pathway deviated from the canonical pathway provided by the tryptophan 
triad/tetrad. This raises the questions of competing electron transfer pathways and non-uniform 



16 
 

populations of radical pairs. In this regard, it is interesting to note that in the avian Cry4 the tryptophan 
tetrad ends at a tyrosine site [75]. If the magnetosensitive RP involved this tyrosine, the 
aforementioned question could be avoided. While attractive, this would require a different functional 
role of the tetrad, which would have to act as a reversible shuttle of electrons between the flavin and 
the tyrosine rather than a mere pathway of efficient charge separation. This would necessitate a 
reduced driving force of charge separation along the tetrad, which could in principle be brought about 
by a less polar environment at the protein surface (in comparison to the aqueous buffers used in in 
vitro experiments). 

 

Entanglement 
When the radical pair is formed in the singlet electronic state, the spins of its electrons are entangled. 

This aspect has attracted much recent attention, in part because it implies a truly quantum aspect 

characteristic of magnetoreception [4, 42, 43, 70, 89-91]. Yet, it is all but clear if entanglement plays 

an important functional role, e.g. in boosting the sensitivity or precision of the directional response to 

a weak magnetic field. Cautious voices have suggested this is likely not the case, as separable initial 

states such as unpolarized triplet states can provide comparable or even larger anisotropies [70, 89]. 

Noting that previous papers focusing on entanglement in magnetoreception have all employed simple 

model spin systems that do not reflect the large number of coupled magnetic nuclei, we have decided 

to once again explore this aspect. Reconstructing the electronic density operator from the spin 

correlation tensors, the negativity, a popular entropy monotone, can be evaluated for complex spin 

systems. Our analysis suggests that for the large spin systems considered here, the negativity drops 

to zero within nanoseconds. In the [F W+]-model we could not observe a rebirth of entanglement at 

any later time irrespective of the mutual orientation of the radicals (entanglement lifetime: ~ 5 ns; see 

Figure S11). Only for the hypothetical [F Z] and [Z Y], a second minor burst is observed. Despite 

this, entanglement within the system is short-lived. As a consequence of its ephemerality, it does not 

show an apparent dependence on the orientation of the external magnetic field. This implies that it 

cannot underpin a crucial aspect of the magnetic anisotropy for any of the models with large numbers 

of hyperfine-coupled nuclei. It is noteworthy that this statement also applies to [F Z], even though 

its hyperfine structure is dominated by the nitrogen nuclei at positions 5 and 10, which, if present 

alone, do sustain negativity much longer (see Figure S12 in the SI). This is remarkable insofar as the 

N5N10-model provides an adequate reflection as far as the singlet anisotropy is concerned, i.e. the 

additional nuclear spins in more extensive models hardly alter the singlet anisotropy. Based on these 

observations, we conclude that the postulated roles of entanglement are likely an upshot of 

oversimplified spin systems [42, 43, 91]. Additionally, we also highlight that all eigenvalues of ̂ AT
el are 

found to be smaller than (or, at t = 0, equal to) ½ for the singlet-born radical pair. As discussed above, 

this implies that the negativity of the analogue triplet-born radical pair is not only zero initially, but 

zero throughout. Nonetheless, as    S S

1 1
(T-born) (S-born)

3 3
 the anisotropy is expected to be of 

the same order of magnitude (assuming that the singlet yield approaches ¼, which is the case for long-

lived radical pairs, the anisotropy is only smaller by a factor of 1/3 for the triplet-born pair). This once 

again corroborates the argument that entanglement is futile given that separable states provide 

comparable effects [4]. While we cannot exclude the possibility that entanglement plays an important 

role in other scenarios than those studied here, our findings suggest that it is likely irrelevant for the 

hyperfine-dominated MFE of radical pairs of realistic complexity. 
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Conclusions 
We have suggested a method to efficiently evaluate the orientational dependence of magnetic 
anisotropy parameters for radical pairs with negligible inter-radical coupling and equal reactivity in 
the singlet and triplet manifold. This approach has been applied to models of radical pairs pertinent 
to the radical pair hypothesis of the avian compass, whereby a realistic number of hyperfine 
interactions could be considered. While the identity of the actual magnetosensitive radical pair in 
cryptochromes under in vivo conditions remains unknown, here, we have focused on radical pairs 
comprising the flavin radical anion and either the tryptophan radical cation or the tyrosine neutral 
radical. 
By systematically probing all relative orientations of the radicals in the pair, we have identified the 
optimal relative orientations with respect to the anisotropy of the singlet yield, a measure of the 

sensitivity of the compass, and optimality, a measure of its precision. We find that for [F W+] in the 
geomagnetic field, these two parameters are anti-correlated and, thus, both metrics cannot be 
simultaneously maximized. The anisotropy is largest for parallel orientations of the aromatic planes of 
the radicals; maximal optimality results for perpendicular orientations. Among the tryptophans of the 
tryptophan tetrad for the Drosophila cryptochrome, WC exhibits the largest anisotropy (and, thus, 
necessarily unfavorable optimality). The optimum relative orientation (relative anisotropy: 0.27 %) 
gave rise to ∼ 50% increase in anisotropy with respect to WC’s orientation within the crystal structure. 
For WD, nearly maximal optimality was realized (provided that the charge recombination reaction was 
not too small to abolish the MFE). Conversely, its anisotropy was minute. It seems likely that natural 
selection has provided the necessary pressure to ensure that in migratory birds, a relative orientation 
is realized for optimal navigational performance. For an [F•− W•+]-based compass, this would 
necessitate compromising on anisotropy and optimality. 

Radical pairs containing tyrosine outperform [F W+] for most relative orientations. An optimal 
anisotropy of 0.96 % can be realized. Furthermore, optimality and anisotropy are correlated and can 
be simultaneously maximized for perpendicular orientations of the radical aromatic planes.  
In general, we conclude that no relative orientation of both [F•− W•+] and [F•− Y•] can reinstate effect 
sizes comparable to the hypothetical [F•− Z+]-model. While nothing is known about the required 
anisotropy of the primary reaction to sustain the compass, this corroborates our impression that 
alternative models such as those recently suggested based on three-radical effects [28, 29, 92] could 
be at play in the presumably highly-optimized and exquisitely sensitive avian compass. This 
supposition is further substantiated by the recent claims of magnetoreception in the dark, which 
seems to conflict with the radical pair paradigm, as it implicates swiftly relaxing species such as 
superoxide [7, 23]. Alternatively, [F•− Y•]-based systems appear better versed than their tryptophan-
containing counterparts. Altogether, this leaves much room for future studies both, of the theoretical 
underpinnings and the functional realization of magnetoreception in cryptochromes. 

For applications of [F W+] at elevated magnetic fields, substantial anisotropies on the order of 10 % 
are possible at 1 mT. Furthermore, the orientational spread of the performance measures is smaller, 
suggesting that the relative orientation is of minor concern. Yet, maximal effects are expected for 
perpendicular orientations of the radical planes, contrary to what optimized the effect in the 
geomagnetic field. 
The fast decay of negativity within both [F•− W•+] and [F•− Z•] radical pairs involving a realistic number 
of hyperfine interactions suggests an inconsequential role of electronic entanglement within the 
Radical Pair Mechanism when applied to the avian compass system. This could imply that, unless 
prominently stated in the literature on quantum biology, coherence, or the decay of coherence, might 
be the sole quantum property of relevance to magnetoreception. 
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Appendix 

Proof of eq. (9): 
For notational simplicity, we suppress the explicit dependence of the spin correlation tensor on the 

identity of the radical, i. Hence, the α,β-matrix element of  tT  is 
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.  (21) 

We shall initially explore the behavior of  tT  under rotation,  

   1( ) ( )t tT RT R ,  (22) 

for a rotation around the z-axis, i.e. for the rotation described by the rotation matrix [93] 
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Using the properties of the spin operators under rotation, 
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it is straight-forward to show that the elements of the rotated tensor are given by 
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Inserting 
  

1 j ji I i I

j

e e  and making use of the commutativity of electron and nuclear spin 

operators and the constant of the trace of products of operators to cyclic permutation, eq. (25) can 

be rewritten as 
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Using eq. (24) once more, this time in the reverse direction, allows to re-express Ĥ  in terms of the 

rotated hyperfine tensors and field by realizing that 
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and, thus, 

       1 1
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An analogous derivation shows that eq. (29) also applies for a rotation about the x-axis. As any 

rotation can be decomposed into consecutive rotations about the z-, x-, and z-axis [93], this proves 

eq. (29) for general rotations, R . Eq. (9) follows from eq. (29) by substituting 0B by 1
0BR . 

Euler angle convention 
We make use of active rotations and parametrize rotations by the zxz-convention (also see Figure S2 

in the Supporting Information). In order to avoid ambiguity, we specify the rotation matrix in terms 

of Euler angles: 

 

           

           

    

  

   
 

    
 
 

( , , )
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R .  (30) 

Here,  cos( )ac a and  sin( )as a . 

 

Supplementary Material 
See the supplementary material for a compilation of the hyperfine tensors used in this study, 

information on the choice representative sidechain dihedral angles, the definition of the molecular 

axis systems, and additional data on the MFEs, including anisotropy plots and the time-dependence 

of the entanglement. 

Acknowledgments 
We thank EPSRC (Grant No. EP/R021058/1) for financial support and NVIDIA for providing a Titan Xp 

GPU through their GPU Grant Program. 

 

References 
[1] H. Mouritsen, Long-distance navigation and magnetoreception in migratory animals, Nature 558 
(2018) 50-59. 
[2] G.C. Nordmann, T. Hochstoeger, D.A. Keays, Unsolved mysteries: Magnetoreception-a sense 
without a receptor, PLoS Biol. 15 (2017). 
[3] R. Wiltschko, W. Wiltschko, Magnetic Orientation in Animals, Springer, Berlin, New York, 1995. 
[4] P.J. Hore, H. Mouritsen, The radical-pair mechanism of magnetoreception, Annu. Rev. Biophys. 45 
(2016) 299-344. 
[5] K. Schulten, C.E. Swenberg, A. Weller, A biomagnetic sensory mechanism based on magnetic field 
modulated coherent electron spin motion, Z. Phys. Chem. 111 (1978) 1-5. 
[6] T. Ritz, S. Adem, K. Schulten, A model for photoreceptor-based magnetoreception in birds, 
Biophys. J. 78 (2000) 707-718. 
[7] M. Pooam, L.D. Arthaut, D. Burdick, J. Link, C.F. Martino, M. Ahmad, Magnetic sensitivity 
mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in 
the dark, Planta (2018). 
[8] M. Ahmad, Photocycle and signaling mechanisms of plant cryptochromes, Curr. Opin. Plant Biol. 
33 (2016) 108-115. 
[9] M.E. Maffei, Magnetic field effects on plant growth, development, and evolution, Frontiers in 
Plant Science 5 (2014). 



20 
 

[10] J.A.T. da Silva, J. Dobranszki, Magnetic fields: how is plant growth and development impacted?, 
Protoplasma 253 (2016) 231-248. 
[11] R.J. Gegear, A. Casselman, S. Waddell, S.M. Reppert, Cryptochrome mediates light-dependent 
magnetosensitivity in Drosophila, Nature 454 (2008) 1014-U1061. 
[12] O. Bazalova, M. Kvicalova, T. Valkova, P. Slaby, P. Bartos, R. Netusil, K. Tomanova, P. Braeunig, 
H.J. Lee, I. Sauman, M. Damulewicz, J. Provaznik, R. Pokorny, D. Dolezel, M. Vacha, Cryptochrome 2 
mediates directional magnetoreception in cockroaches, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 
1660-1665. 
[13] J.B. Phillips, S.C. Borland, Behavioral evidence for use of a light-dependent magnetoreception 
mechanism by a vertebrate, Nature 359 (1992) 142-144. 
[14] D.M.W. Sheppard, J. Li, K.B. Henbest, S.R.T. Neil, K. Maeda, J. Storey, E. Schleicher, T. Biskup, R. 
Rodriguez, S. Weber, P.J. Hore, C.R. Timmel, S.R. Mackenzie, Millitesla magnetic field effects on the 
photocycle of an animal cryptochrome, Sci. Rep. 7 (2017) 42228. 
[15] K. Maeda, A.J. Robinson, K.B. Henbest, H.J. Hogben, T. Biskup, M. Ahmad, E. Schleicher, S. 
Weber, C.R. Timmel, P.J. Hore, Magnetically sensitive light-induced reactions in cryptochrome are 
consistent with its proposed role as a magnetoreceptor, Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 
4774-4779. 
[16] D.R. Kattnig, E.W. Evans, V. Dejean, C.A. Dodson, M.I. Wallace, S.R. Mackenzie, C.R. Timmel, P.J. 
Hore, Chemical amplification of magnetic field effects relevant to avian magnetoreception, Nat. 
Chem. 8 (2016) 384-391. 
[17] Z. Zeng, J.J. Wei, Y.Y. Liu, W.D. Zhang, T. Mabe, Magnetoreception of photoactivated 
cryptochrome 1 in electrochemistry and electron transfer, Acs Omega 3 (2018) 4752-4759. 
[18] D. Nohr, B. Paulus, R. Rodriguez, A. Okafuji, R. Bittl, E. Schleicher, S. Weber, Determination of 
radical-radical distances in light-active proteins and their implication for biological 
magnetoreception, Angew. Chem. Int. Ed. 56 (2017) 8550-8554. 
[19] D. Nohr, S. Franz, R. Rodriguez, B. Paulus, L.O. Essen, S. Weber, E. Schleicher, Extended electron-
transfer in animal cryptochromes mediated by a tetrad of aromatic amino acids, Biophys. J. 111 
(2016) 301-311. 
[20] G.L. Closs, L.E. Closs, Induced Dynamic Nuclear Spin Polarization in Photoreductions of 
Benzophenone by Toluene and Ethylbenzene, J. Am. Chem. Soc. 91 (1969) 4550-&. 
[21] G.L. Closs, A Mechanism Explaining Nuclear Spin Polarizations in Radical Combination Reactions, 
J. Am. Chem. Soc. 91 (1969) 4552-&. 
[22] R. Kaptein, J.L. Oosterhoff, Chemically induced dynamic nuclear polarization II - (Relation with 
anomalous ESR spectra), Chem. Phys. Lett. 4 (1969) 195-197. 
[23] R. Wiltschko, M. Ahmad, C. Nießner, D. Gehring, W. Wiltschko, Light-dependent 
magnetoreception in birds: The crucial step occurs in the dark, J. R. Soc., Interface 13 (2016) 
20151010. 
[24] C. Nießner, S. Denzau, L. Peichl, W. Wiltschko, R. Wiltschko, Magnetoreception in birds: I. 
Immunohistochemical studies concerning the cryptochrome cycle, J. Exp. Biol. 217 (2014) 4221-
4224. 
[25] R. Wiltschko, D. Gehring, S. Denzau, C. Nießner, W. Wiltschko, Magnetoreception in birds: II. 
Behavioural experiments concerning the cryptochrome cycle, J. Exp. Biol. 217 (2014) 4225-4228. 
[26] I.A. Solov'yov, K. Schulten, Magnetoreception through cryptochrome may involve superoxide, 
Biophys. J. 96 (2009) 4804-4813. 
[27] H.J. Hogben, O. Efimova, N. Wagner-Rundell, C.R. Timmel, P.J. Hore, Possible involvement of 
superoxide and dioxygen with cryptochrome in avian magnetoreception: Origin of Zeeman 
resonances observed by in vivo EPR spectroscopy, Chem. Phys. Lett. 480 (2009) 118-122. 
[28] D.R. Kattnig, P.J. Hore, The sensitivity of a radical pair compass magnetoreceptor can be 
significantly amplified by radical scavengers, Sci. Rep. 7 (2017) 11640. 
[29] D.R. Kattnig, Radical-pair-based magnetoreception amplified by radical scavenging: Resilience to 
spin relaxation, J. Phys. Chem. B 121 (2017) 10215-10227. 



21 
 

[30] J.C.S. Lau, N. Wagner-Rundell, C.T. Rodgers, N.J.B. Green, P.J. Hore, Effects of disorder and 
motion in a radical pair magnetoreceptor, J. R. Soc., Interface 7 (2010) S257-S264. 
[31] I.A. Solov'yov, H. Mouritsen, K. Schulten, Acuity of a cryptochrome and vision-based 
magnetoreception system in birds, Biophys. J. 99 (2010) 40-49. 
[32] E. Hill, T. Ritz, Can disordered radical pair systems provide a basis for a magnetic compass in 
animals?, J. R. Soc., Interface 7 (2010) S265-S271. 
[33] T.J. Zwang, E.C.M. Tse, D.P. Zhong, J.K. Barton, A compass at weak magnetic fields using thymine 
dimer repair, Acs Central Science 4 (2018) 405-412. 
[34] P.J. Hore, A DNA-based magnetic sensor, Acs Central Science 4 (2018) 318-320. 
[35] S. Worster, D.R. Kattnig, P.J. Hore, Spin relaxation of radicals in cryptochrome and its role in 
avian magnetoreception, J. Chem. Phys. 145 (2016) 035104. 
[36] D.R. Kattnig, J.K. Sowa, I.A. Solov'yov, P.J. Hore, Electron spin relaxation can enhance the 
performance of a cryptochrome-based magnetic compass sensor, New J. Phys. 18 (2016) 063007. 
[37] D.R. Kattnig, I.A. Solov'yov, P.J. Hore, Electron spin relaxation in cryptochrome-based 
magnetoreception, Phys. Chem. Chem. Phys. 18 (2016) 12443-12456. 
[38] H.G. Hiscock, S. Worster, D.R. Kattnig, C. Steers, Y. Jin, D.E. Manolopoulos, H. Mouritsen, P.J. 
Hore, The quantum needle of the avian magnetic compass, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 
4634-4639. 
[39] A.A. Lee, J.C.S. Lau, H.J. Hogben, T. Biskup, D.R. Kattnig, P.J. Hore, Alternative radical pairs for 
cryptochrome-based magnetoreception, J. R. Soc., Interface 11 (2014) 20131063. 
[40] M. Procopio, T. Ritz, Inhomogeneous ensembles of radical pairs in chemical compasses, Sci. Rep. 
6 (2016). 
[41] J.B. Pedersen, C. Nielsen, I.A. Solov'yov, Multiscale description of avian migration: from chemical 
compass to behaviour modeling, Sci. Rep. 6 (2016) 36709. 
[42] E.M. Gauger, E. Rieper, J.J.L. Morton, S.C. Benjamin, V. Vedral, Sustained quantum coherence 
and entanglement in the avian compass, Phys. Rev. Lett. 106 (2011) 040503. 
[43] Y.T. Zhang, G.P. Berman, S. Kais, The radical pair mechanism and the avian chemical compass: 
Quantum coherence and entanglement, Int. J. Quantum Chem. 115 (2015) 1327-1341. 
[44] C. Nielsen, D.R. Kattnig, E. Sjulstok, P.J. Hore, I.A. Solov'yov, Ascorbic acid may not be involved in 
cryptochrome-based magnetoreception, J. R. Soc., Interface 14 (2017) 20170657. 
[45] N. Lambert, Y.N. Chen, Y.C. Cheng, C.M. Li, G.Y. Chen, F. Nori, Quantum biology, Nature Physics 
9 (2013) 10-18. 
[46] S.F. Huelga, M.B. Plenio, Vibrations, quanta and biology, Contemporary Physics 54 (2013) 181-
207. 
[47] A. Marais, B. Adams, A.K. Ringsmuth, M. Ferretti, J.M. Gruber, R. Hendrikx, M. Schuld, S.L. 
Smith, I. Sinayskiy, T.P.J. Kruger, F. Petruccione, R. van Grondelle, The future of quantum biology, J. 
R. Soc., Interface 15 (2018). 
[48] S. Oldemeyer, S. Franz, S. Wenzel, L.O. Essen, M. Mittag, T. Kottke, Essential role of an unusually 
long-lived tyrosyl radical in the response to red light of the animal-like cryptochrome acry, J. Biol. 
Chem. 291 (2016) 14062-14071. 
[49] C. Thöing, S. Oldemeyer, T. Kottke, Microsecond deprotonation of aspartic acid and response of 
the alpha/beta subdomain precede c-terminal signaling in the blue light sensor plant cryptochrome, 
J. Am. Chem. Soc. 137 (2015) 5990-5999. 
[50] T. Biskup, B. Paulus, A. Okafuji, K. Hitomi, E.D. Getzoff, S. Weber, E. Schleicher, Variable electron 
transfer pathways in an amphibian cryptochrome: Tryptophan versus tyrosine-based radical pairs, J. 
Biol. Chem. 288 (2013) 9249-9260. 
[51] B.D. Zoltowski, A.T. Vaidya, D. Top, J. Widom, M.W. Young, B.R. Crane, Structure of full-length 
Drosophila cryptochrome, Nature 480 (2011) 396-399. 
[52] C. Levy, B.D. Zoltowski, A.R. Jones, A.T. Vaidya, D. Top, J. Widom, M.W. Young, N.S. Scrutton, 
B.R. Crane, D. Leys, Updated structure of Drosophila cryptochrome, Nature 495 (2013) E3-E4. 



22 
 

[53] C.A. Brautigam, B.S. Smith, Z.Q. Ma, M. Palnitkar, D.R. Tomchick, M. Machius, J. Deisenhofer, 
Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana, Proc. Natl. 
Acad. Sci. U. S. A. 101 (2004) 12142-12147. 
[54] M. El-Esawi, A. Glascoe, D. Engle, T. Ritz, J. Link, M. Ahmad, Cellular metabolites modulate in 
vivo signaling of Arabidopsis cryptochrome-1, Plant Signaling & Behavior 10 (2015). 
[55] C. Engelhard, X.C. Wang, D. Robles, J. Moldt, L.O. Essen, A. Batschauer, R. Bittl, M. Ahmad, 
Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate 
electron transfer pathways, Plant Cell 26 (2014) 4519-4531. 
[56] T. Biskup, K. Hitomi, E.D. Getzoff, S. Krapf, T. Koslowski, E. Schleicher, S. Weber, Unexpected 
electron transfer in cryptochrome identified by time-resolved epr spectroscopy, Angew. Chem. Int. 
Ed. 50 (2011) 12647-12651. 
[57] K. Schulten, P.G. Wolynes, Semiclassical description of electron spin motion in radicals including 
the effect of electron hopping, The Journal of Chemical Physics 68 (1978) 3292-3297. 
[58] N.N. Lukzen, D.R. Kattnig, G. Grampp, The effect of signs of hyperfine coupling constant on 
MARY spectra affected by degenerate electron exchange, Chem. Phys. Lett. 413 (2005) 118-122. 
[59] D.R. Kattnig, A. Rosspeintner, G. Grampp, Fully reversible interconversion between locally 
excited fluorophore, exciplex, and radical ion pair demonstrated by a new magnetic field effect, 
Angew. Chem. Int. Ed. 47 (2008) 960-962. 
[60] L. Kowalik, J.K. Chen, Illuminating developmental biology through photochemistry, Nat. Chem. 
Biol. 13 (2017) 587-598. 
[61] C.N.G. Giachello, N.S. Scrutton, A.R. Jones, R.A. Baines, Magnetic fields modulate blue-light-
dependent regulation of neuronal firing by cryptochrome, J. Neurosci. 36 (2016) 10742-10749. 
[62] S. Paul, A.S. Kiryutin, J.P. Guo, K.L. Ivanov, J. Matysik, A.V. Yurkovskaya, X.J. Wang, Magnetic 
field effect in natural cryptochrome explored with model compound, Sci. Rep. 7 (2017). 
[63] T.M. Zollitsch, L.E. Jarocha, C. Bialas, K.B. Henbest, G. Kodali, P.L. Dutton, C.C. Moser, C.R. 
Timmel, P.J. Hore, S.R. Mackenzie, Magnetically sensitive radical photochemistry of non-natural 
flavoproteins, J. Am. Chem. Soc. 140 (2018) 8705-8713. 
[64] R. Haberkorn, Density matrix description of spin-selective radical pair reactions, Mol. Phys. 32 
(1976) 1491-1493. 
[65] O. Efimova, P.J. Hore, Role of exchange and dipolar interactions in the radical pair model of the 
avian magnetic compass, Biophys. J. 94 (2008) 1565-1574. 
[66] P.J. Hore, Upper bound on the biological effects of 50/60 Hz magnetic fields mediated by radical 
pairs, Elife 8 (2019). 
[67] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77 (1996) 1413-1415. 
[68] M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: Necessary and sufficient 
conditions, Phys. Lett. A 223 (1996) 1-8. 
[69] G. Vidal, R.F. Werner, Computable measure of entanglement, Phys. Rev. A 65 (2002) 032314. 
[70] H.J. Hogben, T. Biskup, P.J. Hore, Entanglement and sources of magnetic anisotropy in radical 
pair-based avian magnetoreceptors, Phys. Rev. Lett. 109 (2012). 
[71] T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying Coherence, Phys. Rev. Lett. 113 (2014). 
[72] T. Möller, B. Trumbore, Fast, minimum storage ray-triangle intersection, Journal of Graphics 
Tools 2 (2012) 21-28. 
[73] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, 
V.G. Barone, A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. Janesko, G.R. 
Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, 
F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. 
Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. 
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. 
Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. 
Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, 
J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. 



23 
 

Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., 
Wallingford CT, 2013. 
[74] N.M. Atherton, Principles of electron spin resonance, Ellis Horwood, Chichester, 1993. 
[75] D.R. Kattnig, C. Nielsen, I.A. Solov'yov, Molecular dynamics simulations disclose early stages of 
the photo-activation of cryptochrome 4, New J. Phys. 20 (2018). 
[76] A. Günther, A. Einwich, E. Sjulstok, R. Feederle, P. Bolte, K.W. Koch, I.A. Solov'yov, H. Mouritsen, 
Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for 
European Robin Cryptochrome 4, Curr. Biol. 28 (2018) 211-223. 
[77] S. Franz, E. Ignatz, S. Wenzel, H. Zielosko, E.P.G.N. Putu, M. Maestre-Reyna, M.D. Tsai, J. 
Yamamoto, M. Mittag, L.O. Essen, Structure of the bifunctional cryptochrome aCRY from 
Chlamydomonas reinhardtii, Nucleic Acids Res. 46 (2018) 8010-8022. 
[78] S. Richert, A. Rosspeintner, S. Landgraf, G. Grampp, E. Vauthey, D.R. Kattnig, Time-resolved 
magnetic field effects distinguish loose ion pairs from exciplexes, J. Am. Chem. Soc. 135 (2013) 
15144-15152. 
[79] G. Jeschke, B.C. Anger, B.E. Bode, J. Matysik, Theory of solid-state photo-CIDNP in the Earth's 
magnetic field, J. Phys. Chem. A 115 (2011) 9919-9928. 
[80] S.S. Thamarath, J. Heberle, P.J. Hore, T. Kottke, J. Matysik, Solid-state photo-CIDNP effect 
observed in phototropin LOV1-C57S by C-13 magic-angle spinning NMR spectroscopy, J. Am. Chem. 
Soc. 132 (2010) 15542-15543. 
[81] A.M. Lewis, D.E. Manolopoulos, P.J. Hore, Asymmetric recombination and electron spin 
relaxation in the semiclassical theory of radical pair reactions, J. Chem. Phys. 141 (2014). 
[82] D.E. Manolopoulos, P.J. Hore, An improved semiclassical theory of radical pair recombination 
reactions, J. Chem. Phys. 139 (2013). 
[83] F. Cailliez, P. Müller, T. Firmino, P. Pernot, A. de la Lande, Energetics of photoinduced charge 
migration within the tryptophan tetrad of an animal (6-4) photolyase, J. Am. Chem. Soc. 138 (2016) 
1904-1915. 
[84] P. Müller, J. Yamamoto, R. Martin, S. Iwai, K. Brettel, Discovery and functional analysis of a 4th 
electron-transferring tryptophan conserved exclusively in animal cryptochromes and (6-4) 
photolyases, Chem. Commun. 51 (2015) 15502-15505. 
[85] N.F. Polizzi, A. Migliore, M.J. Therien, D.N. Beratan, Defusing redox bombs?, Proc. Natl. Acad. 
Sci. U. S. A. 112 (2015) 10821-10822. 
[86] D.N. Beratan, S.S. Skourtis, I.A. Balabin, A. Balaeff, S. Keinan, R. Venkatramani, D.Q. Xiao, 
Steering Electrons on Moving Pathways, Acc. Chem. Res. 42 (2009) 1669-1678. 
[87] M. Liedvogel, K. Maeda, K. Henbest, E. Schleicher, T. Simon, C.R. Timmel, P.J. Hore, H. 
Mouritsen, Chemical magnetoreception: Bird cryptochrome 1a is excited by blue light and forms 
long-lived radical-pairs, PLoS One 2 (2007) e1106. 
[88] G. Baldissera, M. Byrdin, M. Ahmad, K. Brettel, Light-induced electron transfer in a 
cryptochrome blue-light photoreceptor, Nat. Struct. Biol. 10 (2003) 489-490. 
[89] J.M. Cai, G.G. Guerreschi, H.J. Briegel, Quantum control and entanglement in a chemical 
compass, Phys. Rev. Lett. 104 (2010) 220502. 
[90] I.K. Kominis, Magnetic sensitivity and entanglement dynamics of the chemical compass, Chem. 
Phys. Lett. 542 (2012) 143-146. 
[91] Y.T. Zhang, G.P. Berman, S. Kais, Sensitivity and entanglement in the avian chemical compass, 
Phys. Rev. E 90 (2014). 
[92] R.H. Keens, S. Bedkihal, D.R. Kattnig, Magnetosensitivity in dipolarly coupled three-spin systems, 
Phys. Rev. Lett. 121 (2018) 096001. 
[93] J.J. Sakurai, J. Napolitano, Modern quantum mechanics, 2nd ed., Addison-Wesley, Boston, 2011. 

 

  



24 
 

Figures and Tables 
 

Table 1: Relative and absolute anisotropies of the singlet yield for radical pairs comprising the flavin 

anion radical and either the tryptophan cation radical or the tyrosine radical at different relative 

orientations and a radical pair lifetime of 1 μs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 B B0 α / ° β / ° γ / ° ΓS / % ΔS / 105 
maximal 
relative 
anisotropy 

W 50 μT 86 5 107 0.271 73.8 

 1 mT 116 88 -84 9.89 2910 

 5 mT 54 179 -144 4.19 1970 

Y 50 μT 179 88 174 0.963 251 

maximal 
optimality 

W 50 μT -27 93 0 0.099 2.52 

Y 50 μT 144 95 4 0.802 210 

DmCry WA = W420 50 μT -115 80 90 0.110 2.80 

 WB = W397 50 μT 82 102 99 0.105 2.69 

 WC = W342 50 μT 136 141 13 0.183 4.87 

 WD = W394 50 μT 70 83 9 0.100 2.56 

 WC = W342 1 mT 136 141 13 8.53 2530 

 WC = W342 5 mT 136 141 13 4.06 1910 

AtCry1 WC = W324 50 μT 123 112 1 0.112 2.87 

ErCry4 WC = W318 50 μT 126 130 -7 0.149 3.90 

 WD = W369 50 μT 78 97 -11 0.103 2.62 
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Figure 1: A) Structure of the cryptochrome from D. melanogaster (PDB ID: 4GU5) with potentially 

electroactive tyrosine (blue) and tryptophan (cyan) residues highlighted. The tryptophan tetrad, which 

comprises four tryptophan residues and forms a highly conserved electron transfer pathway, is shown 

in orange. The flavin cofactor (flavin adenine dinucleotide; FAD) is drawn in red. B) Schematic 

illustration of the origin of the origin of the magnetosensitivity: coherent singlet-triplet conversion in 

the radical pair in combination with spin-selective reactivity. F– stands for the radical anion of the 

flavin cofactor; X denotes a radical partner, whose identity is subject to ongoing controversy. In in 

vitro experiments, X was found to correspond to a tryptophan radical from the tryptophan 

triad/tetrad, WC
. In vivo, alternative structures and electron transfer pathways could give rise to 

different radical pairs. 
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Figure 2: Representation of the considered hyperfine interactions in A) F– (12 coupled nuclei), B) W+ 

(9 coupled nuclei) and C) Y (7 coupled nuclei) superimposed on the (truncated) structures of the 

radicals. Here, the hyperfine contours are drawn such that 1 Å corresponds to 17 MHz. For W+ and Y 

a hyperfine interaction of a β-proton was scaled down by the indicated factor. The local axes systems 

are shown. Details of their definition in relation to the molecular structure are provided in the 

Supporting Information (Figure S4). The hyperfine interaction tensors, which are listed in the 

Supporting Information, Tables S1 to S3, were calculated at the UB3LYP/EPR-III level of theory. 
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Figure 3: Relative anisotropy of the singlet yield of [F•− W•+] as a function of the relative orientation of 

the radicals. The magnetic field intensity was B0 = 50 T and the radical pair lifetime 1 μs. A) gives 

selected slices through the orientational dependent yield as a function of the three Euler angles, α, β, 

γ that specify the orientation of the flavin radical in the molecular frame of W•+. B) and C) provide two 

dimensional representations for the α,β-plane and β,γ-plane passing through the orientation of 

maximal anisotropy (α = 86°, β = 5°, γ = 107°; marked by red star), respectively. The (projections of 

the) relative orientations of tryptophans of the tryptophan triad/tetrad have been indicated for DmCry 

(bullets), AtCry1 (triangles) and ErCry4 (squares). The same color bar applies to all panels. 
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Figure 4: Dependence of the relative singlet yield anisotropy of [F•− Y•] in a magnetic field of B0 = 50 

T as a function of the relative orientation of the radicals. A) gives selected slices through the 

orientational dependent yield as a function of the three Euler angles, α, β, γ that specify the 

orientation of the flavin radical in the molecular frame of Y•. B) and C) provide two dimensional 

representations for the α,β-plane and β,γ-plane passing through the orientation of maximal 

anisotropy (α = 179°, β = 88°, γ = 174°; marked by red star), respectively. The radical pair lifetime was 

1 μs. 
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Figure 5: Dependence of the optimality as defined in eq. (20) of A) [F•− W•+] and B) [F•− Y•] in a magnetic 

field of B0 = 50 T as a function of the relative orientation of the radicals. The α, β-dependence is 

shown for the γ of maximal optimality. For [F•− W•+] and [F•− Y•], maximal optimality is realized for α = 

-27°, β = 93°, γ = 0° and for α = 144°, β = 95°, γ = 4°, respectively. The orientation of maximal optimality 

is marked by a red star. For [F•− W•+] (A) the tryptophans of the tryptophan triad/tetrad have been 

indicated for DmCry (bullets), AtCry1 (triangles) and ErCry4 (squares). The radical pair lifetime was 

1 μs. 

 

 


